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1. Introduction

In the celebrated index theorem of Atiyah, Patodi and Singer [2] for the Dirac operator
on compact Riemannian manifolds with boundary the Eta invariant appears as a global
correction term. It is defined in terms of the eigenvalues of the Dirac operator on the
boundary as follows: If λ runs through the eigenvalues according to their multiplicities
then the Dirichlet series

η(s) :=
∑
λ6=0

signλ

|λ|s
, s ∈ C,

converges for sufficiently large <s and can be continued analytically to s = 0. Its value
η(0) is called the Eta invariant. If all the other terms in the index formula are known
then the Eta invariant can be computed. But often one would like to compute the index
of the Dirac operator from the formula and therefore other means to compute η(0) are
required.

Once the spectrum {λ} is explicitly known the problem of computing η(0) is a purely
analytic one. For certain specific examples the spectrum turns out to be parametrized by
finitely many discrete variables in a quite elementary way [1], [3], [5]. Thus techniques
from Analytic Number Theory might be applicable to compute η(0). If there is just one
parameter the problem is easy to solve (see, e.g., [11], [12]). The case of several parameters
is much harder.

In the present paper the Eta invariant is computed for spheres S2m+1 with Berger metric
in which case the eigenvalues depend on two discrete parameters. This is done in two
steps:

(1) The Dirichlet series η(0) is reduced to Dirichlet series associated with certain
polynomials and thus η(0) is computed in terms of the residues of the latter series
at certain half integral values.

(2) The residues are expressed in terms of integrals which in the present case can be
explicitly evaluated.

Among the known methods for the meromorphic continuation of Dirichlet series associated
with polynomials [4], [7], [8], [9], [10], Mahlers method [8] turns out to be best suited for
explicit calculations.

Since the Berger metric depends on some positive scaling factor T the Eta invariant is a
function of T . The procedure above in fact shows that η(0) is a Laurent polynomial in T
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and for every given value of m, it can be computed effectively. Unfortunately, the resulting
formula contains rather twisted summations so that not more than this can be seen from
it. On the other hand, evaluations with a computer algebra system show the surprising
fact that for small values of m the Eta invariant is always of the form cm(1− T 2)m+1. In
particular, it is a polynomial in T .

A careful analysis shows that η(0) being a polynomial in T is equivalent to certain sums
with hypergeometric terms vanishing. We could prove this for all m thus establishing
that η(0) is indeed a polynomial in T . But we were unable to prove the much stronger
conjecture that the Eta invariant is always a monomial in 1− T 2.

A Pari-GP script for calculating the Eta invariant for arbitrary m can be downloaded
from http://web.mathematik.uni-freiburg.de/mi/zahlen/home/peter.

Acknowledgements. We thank Prof. C. Bär for posing this problem to us. The
helpful discussions with him are much appreciated.

2. Reduction to Dirichlet series associated with polynomials

Let m ∈ N. The spectrum of the Dirac operator on S2m+1 with Berger metric for the
parameter T > 0 consists of the following numbers with their respective multiplicities:

λ(ν), (−1)m−1λ(ν) with multiplicities µ(ν) (ν ∈ N),

1

T
λ±j (z1, z2) with multiplicities

µj(z1, z2)

m!j!(m− 1− j)!
(z1, z2 ∈ N, 0 ≤ j ≤ m− 1),

where

λ(ν) :=
1

T

(
ν +

mT 2 +m− 1

2

)
,

µ(ν) :=
1

m!

m−1∏
i=0

(ν + i),

λ±j (z1, z2) :=
(−1)jT 2

2
±
√
Qj(z1, z2),

Qj(z1, z2) :=
[
(T 2 + 1)

(m− 1

2
− j
)

+ z1 − z2

]2

+ 4T 2(z1 +m− 1− j)(z2 + j),

µj(z1, z2) :=
z1 + z2 +m− 1

(z1 +m− 1− j)(z2 + j)

m−1∏
i=0

(z1 + i)(z2 + i).

For m = 1 this result is due to Hitchin [5]. In the general case the spectrum was computed
by Bär [3].

For even m the spectrum is symmetric about 0 and thus η(0) = 0. So from now
on we will assume that m is odd. In order to simplify computations we assume that
0 < T < 4

√
m. Then

Qj(z1, z2) >
(T 2

2

)2

(2.1)
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for z1, z2 ≥ 1 and thus

η(s) = η1(s) + 2

(m−3)/2∑
j=0

η2,j(s) + η2,(m−1)/2(s), (2.2)

where

η1(s) :=
∑
ν≥1

2µ(ν)

λ(ν)s
, (2.3)

η2,j(s) :=
T s

m!j!(m− 1− j)!
∑

z1,z2≥1

µ(z1, z2)
(
λ+
j (z1, z2)−s − (−λ−j (z1, z2))−s

)
(2.4)

for sufficiently large <s.
For the moment, fix 0 ≤ j ≤ m − 1 and set µ := µj, Q := Qj, a := (−1)jT 2/2. For

<s > 2m+ 1, the Binomial series gives

D±(s) :=
∑

z1,z2≥1

µ(z1, z2)

(
√
Q(z1, z2)± a)s

=
∑

z1,z2≥1

µ(z1, z2)

Q(z1, z2)s/2

∑
k≥0

(
−s
k

)(
±a√

Q(z1, z2)

)k
,

where the right hand double series is absolutely convergent. For <s > m + 1/2, define
the Dirichlet series

DS[µ,Q](s) :=
∑

z1,z2≥1

µ(z1, z2)

Q(z1, z2)s
.

Then for <s > 2m+ 1, we have

D±(s) =
∑
k≥0

(
−s
k

)
(±a)kDS[µ,Q]

(s+ k

2

)
.

From (2.1) it follows that there is an ε > 0 such that for all δ > 0,

DS[µ,Q](s)�δ (a2 + ε)m−1/2−<s for <s ≥ m+
1

2
+ δ.

Thus the series

R±(s) :=
∑

k≥2m+2

(
−s
k

)
(±a)kDS[µ,Q]

(s+ k

2

)
is uniformly convergent for <s ≥ −1 + 2δ, |s| ≤ K, where K, δ > 0, and consequently
it represents a holomorphic function on <s > −1. Furthermore, we have R±(0) = 0. In
Proposition 4.1 below it will be shown that DS[µ,Q] has a meromorphic continuation to
C and only simple poles. Thus

D±(s) =
2m+1∑
k=0

(
−s
k

)
(±a)kDS[µ,Q]

(s+ k

2

)
+R±(s)

has a meromorphic continuation to <s > −1 and its Laurent expansion at s = 0 begins
with

s−1 · 2 ress=0 DS[µ,Q](s) + s0 · 2
2m+1∑
k=1

(−1)k

k
(±a)k ress=k/2 DS[µ,Q](s) + · · · .
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Together with (2.4) this proves the following proposition.

Proposition 2.1. For m ∈ N odd, 0 ≤ j ≤ m−1 and 0 < T < 4
√
m, the function η2,j(s)

has a meromorphic continuation to <s > −1 and is holomorphic at s = 0 with

η2,j(0) =
2(−1)j+1T 2

m!j!(m− 1− j)!

m∑
k=0

T 4k

(2k + 1)4k
ress=k+1/2 DS[µj, Qj](s).

3. The one-parameter Dirichlet series

In this section we calculate η1(0).

Proposition 3.1. Let Φ ∈ C[X] have degree d and α > 0. For <s > d+ 1, define

D(s) :=
∑
ν≥0

Φ(ν)

(ν + α)s
.

Then D has a meromorphic continuation to C and is holomorphic at 0 with

D(0) = −
d∑
l=0

Bl+1(α)

(l + 1)!
Φ(l)(−α),

where Bν is the ν-th Bernoulli polynomial.

Proof. By linearity we can reduce the general case to the case Φ = Xd. Then

D(s) =
∑
ν≥0

(ν + α− α)d

(ν + α)s
=

d∑
l=0

(
d

l

)
(−α)d−lζ(s− l, α), <s > d+ 1,

where ζ(·, α) is the Hurwitz zeta function. It has a meromorphic continuation to C with
a single simple pole at s = 1; furthermore,

ζ(−k, α) = −Bk+1(α)

k + 1
, k ∈ N0

(see [14], Section (13·14)). Now the part about meromorphy of D(s) follows. Furthermore,

D(0) = −
d∑
l=0

(
d

l

)
(−α)d−l

Bl+1(α)

l + 1
= −

d∑
l=0

Φ(l)(−α)

(l + 1)!
Bl+1(α).

�

Applying this proposition to (2.3) gives

Corollary 3.2. Let m ∈ N be odd and 0 < T < 4
√
m. Define Φ :=

∏m−1
i=0 (X + i). Then

η1(0) = − 2

m!

m∑
l=0

Bl+1((mT 2 +m+ 1)/2)

(l + 1)!
Φ(l)
(
− mT 2 +m− 1

2

)
.
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4. The two-parameter Dirichlet series

Let µ and Q have the same meaning as in Section 2. The residues of D[µ,Q] are
calculated in three steps.

First we get rid of the linear and constant part of Q in the denominator. Set

P2 := (z1 − z2)2 + 4T 2z1z2, P1 := Q− P2.

Then it follows that, for <s > m+ 1/2,

DS[µ,Q](s) =
∑

z1,z2≥1: z1+z2>K

µ(z1, z2)

P2(z1, z2)s

∑
h≥0

(
−s
h

)(
P1

P2

(z1, z2)

)h
+

∑
z1,z2≥1: z1+z2≤K

µ(z1, z2)

Q(z1, z2)s
= D1(s) +D2(s),

where K ≥ 1 is choosen such that |P1/P2(z1, z2)| ≤ 1/2 for z1, z2 ≥ 1, z1 + z2 > K. Let
H ∈ N. Then

D1(s) =
∑

0≤h≤H

(
−s
h

)(
DS[µP h

1 , P2](s+ h)−
∑

z1,z2≥1: z1+z2≤K

(µP h
1 )(z1, z2)

P2(z1, z2)s+h

)

+
∑

z1,z2≥1: z1+z2>K

µ(z1, z2)

P2(z1, z2)s

∑
h>H

(
−s
h

)(
P1

P2

(z1, z2)

)h
.

The last double sum is absolutely and uniformly convergent for s in a compact subset of
<s > m − H/2. In Proposition 4.3 below we will show for arbitrary P ∈ C[z1, z2] that
DS[P, P2] has a meromorphic continuation to C with only simple poles. Thus we have
the following proposition.

Proposition 4.1. The Dirichlet series DS[µ,Q] has a meromorphic continuation to C
with only simple poles. For k ∈ N0, we have

ress=k+1/2 DS[µ,Q](s) =
∑

0≤h≤2m

(
−k − 1/2

h

)
ress=h+k+1/2 DS[µP h

1 , P2](s).

In the next step we reduce DS[P, P2] to parameter integrals. Let φ ∈ C∞(R2) with
φ(x) = 0 for ‖x‖ ≤ 1/2 and φ(x) = 1 for ‖x‖ ≥ 1. A twofold application of Euler’s
sum formula (see, e.g., [13], Chapter I.0, Theorem 4) gives, for P ∈ C[z1, z2], d := degP ,
<s > (d+ 2)/2, L ∈ N,

DS[P, P2](s) =
∑

z1,z2≥1

φP

P s
2

(z1, z2)

=DI2[P, P2](s)−
∑

1≤l≤L

(−1)lBl

l!

∫ ∞
1

∂l−1

∂zl−1
2

P

P s
2

(z1, 0) dz1

−
∑

1≤l≤L

(−1)lBl

l!

∫ ∞
1

∂l−1

∂zl−1
1

P

P s
2

(0, z2) dz2 + h(s), (4.1)
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where

DI2[P, P2](s) :=

∫
‖(z1,z2)‖≥1

P

P s
2

(z1, z2) dz1dz2, <s > d+ 2

2
,

and h(s) is holomorphic on <s > (d + 2 − L)/2. The mollifier φ is used to cut out the
critical point (0, 0) and only appears in the terms collected in h(s).

The next proposition is concerned with the meromorphic continuation of the onedimen-
sional integrals.

Proposition 4.2. Let P = zu1 z
v
2 , u, v ∈ N0, and l ∈ N0. For <s > (v + 1)/2, define

DI1
(z1)[P, P2; l](s) :=

∫ ∞
1

∂l

∂zl1

P

P s
2

(0, z2) dz2.

This function has a meromorphic continuation to C with only a simple pole at s = (u +
v + 1− l)/2 and residue

l!

2

∑
k≥κ≥0: 2k−κ=l−u

(
(1− u− v − l)/2

k

)(
k

κ

)
(4T 2 − 2)κ.

Proof. There is some ε > 0 such that for <s > (v + 1)/2, 0 ≤ z1 ≤ ε, we have

J(s, z1) :=

∫ ∞
1

P

P s
2

(z1, z2) dz2 = zu1

∫ ∞
1

zv−2s
2

(
1 + (4T 2 − 2)

z1

z2

+
z2

1

z2
2

)−s
dz2

=zu1
∑
k≥0

(
−s
k

)∫ ∞
1

zv−2s
2

(
(4T 2 − 2)

z1

z2

+
z2

1

z2
2

)k
dz2

=zu1
∑
k≥0

(
−s
k

) ∑
0≤κ≤k

(
k

κ

)
(4T 2 − 2)κz2k−κ

1

1

2s− v + 2k − κ− 1
.

If ε is choosen small enough then for every compact K ∈ C the double series, after
removing finitely many terms, converges uniformly for s ∈ K, |z1| < ε. Thus J(s, z1)
has a meromorphic continuation to C × {|z1| < ε} and I(s) = (∂lJ)/(∂zl1)(s, 0) has a
meromorphic continuation to C with only simple poles. They lie at s = λ/2, λ ∈ Z,
λ ≤ v + 1, and have

ress=λ/2 I(s) =
∂l

∂zl1
ress=λ/2 J(s, z1)

∣∣
z1=0

=
∂l

∂zl1

(
1

2
zu1

∑
k≥κ≥0: 2k−κ=v+1−λ

(
−λ/2
k

)(
k

κ

)
(4T 2 − 2)κz2k−κ

1

)∣∣∣∣
z1=0

=
l!

2

∑
k≥κ≥0: 2k−κ=v+1−λ

(
−λ/2
k

)(
k

κ

)
(4T 2 − 2)κ

if u+ v + 1− λ = l and ress=λ/2 I(s) = 0 otherwise. �

In Proposition 4.4 below it will be shown that DI2[P, P2] has a meromorphic continu-
ation to C with only simple poles. They lie at s = λ/2, λ ∈ Z, λ ≤ d+ 1. Thus (4.1) and
Proposition 4.2 give
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Proposition 4.3. Let P ∈ C[z1, z2] with d := degP . Then DS[P, P2] has a meromorphic
continuation to C with only simple poles. They lie at λ/2, λ ∈ Z, λ ≤ d+ 1, and have

ress=λ/2 DS[P, P2](s) = ress=λ/2 DI
2[P, P2](s)

+
∑

1≤l≤d+2−λ

(−1)l+1Bl

l!
ress=λ/2 DI

1
(z1)[P, P2; l − 1](s)

+
∑

1≤l≤d+2−λ

(−1)l+1Bl

l!
ress=λ/2 DI

1
(z2)[P, P2; l − 1](s).

The last step in the calculation of the residues of D[µ,Q] is

Proposition 4.4. Let P = zg1z
G−g
2 , 0 ≤ g ≤ G, with G odd. Then DI2[P, P2] has a

meromorphic continuation to C with only a simple pole at s = (G+ 2)/2 and residue

((G− 1)/2)!

4TG+1G!

(G−1)/2∑
µ=0

T 2µ ((G− 1)/2− µ)!(2µ)!

µ!

(
g − (G+ 1)/2 + µ

2µ

)
.

Proof. The idea is to introduce suitable polar coordinates so that the curve P2(z1, z2) = 1
corresponds to r = 1. For 0 < T < 1, set

(z1, z2) = r
(cosφ

2T
− sinφ

2
√

1− T 2
,
cosφ

2T
+

sinφ

2
√

1− T 2

)
=: r · (z1(φ), z2(φ)),

r ≥ 1, |φ| ≤ arctan
(√1− T 2

T

)
.

For T > 1, set

(z1, z2) = r
(coshφ

2T
− sinhφ

2
√
T 2 − 1

,
coshφ

2T
+

sinhφ

2
√
T 2 − 1

)
,

r ≥ 1, |φ| ≤ arctanh
(√T 2 − 1

T

)
.

For T = 1, set

(z1, z2) = r · (t, 1− t), r ≥ 1, 0 ≤ t ≤ 1.

We will give the proof only in the first case. For <s > (G+ 2)/2, we have

DI2[P, P2](s) =
1

2T
√

1− T 2

∫ ∞
1

∫ arctan(
√

1−T 2/T )

− arctan(
√

1−T 2/T )

r1+G−2sz1(φ)gz2(φ)G−gdφ dr

=
1

2T
√

1− T 2

1

2s−G− 2

∑
0≤a≤g

0≤b≤G−g

(−1)g−a
(
g

a

)(
G− g
b

)

× (2T )−a−b(2
√

1− T 2)a+b−G
∫ arctan(

√
1−T 2/T )

− arctan(
√

1−T 2/T )

(cosφ)a+b(sinφ)G−a−bdφ.
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If a + b is even the integrand is odd and the integral vanishes. Therefore we set a + b =
G− 2ρ, a = g − ι, and get for the sum

(2T )−G
(G−1)/2∑
ρ=0

( T 2

1− T 2

)ρ ∑
0≤ι≤g:

0≤2ρ−ι≤G−g

(−1)ι
(
g

ι

)(
G− g
2ρ− ι

)

×
∫ arctan(

√
1−T 2/T )

− arctan(
√

1−T 2/T )

(cosφ)G−2ρ(sinφ)2ρdφ.

Substituting τ = sinφ gives for the integral∫ √1−T 2

−
√

1−T 2

τ 2ρ(1− τ 2)(G−1)/2−ρdτ = 2
√

1− T 2

(G−1)/2−ρ∑
γ=0

(−1)γ
(

(G− 1)/2− ρ
γ

)
(1− T 2)ρ+γ

2ρ+ 2γ + 1
.

Putting everything together gives

DI2[P, P2](s) =
1

s− (G+ 2)/2

1

(2T )G+1

(G−1)/2∑
ρ=0

(G−1)/2−ρ∑
γ=0

(
(G− 1)/2− ρ

γ

)
T 2ρ(T 2 − 1)γ

2ρ+ 2γ + 1

×
∑

0≤ι≤g: 0≤2ρ−ι≤G−g

(−1)ι
(
g

ι

)(
G− g
2ρ− ι

)
.

Now the residue R at s = (G+ 2)/2 will be simplified. The binomial theorem gives

R =
1

(2T )G+1

(G−1)/2∑
µ=0

(−1)µT 2µ

µ∑
ρ=0

(−1)ρ
∑

0≤ι≤g:
0≤2ρ−ι≤G−g

(−1)ι
(
g

ι

)(
G− g
2ρ− ι

)

×
(G−1)/2−ρ∑

γ=0

(−1)γ
(

(G− 1)/2− ρ
γ

)(
γ

µ− ρ

)
1

2ρ+ 2γ + 1
. (4.2)

It is well known (see, e.g., [6], equation (5 · 42)) that, for n ∈ N0, f ∈ C[X], deg f < n,
n∑
ν=0

(−1)ν
(
n

ν

)
f(ν) = 0. (4.3)

Now ((
γ

µ− ρ

)
−
(
−ρ− 1/2

µ− ρ

))
1

2ρ+ 2γ + 1

is a polynomial in γ of degree µ − ρ − 1 < (G − 1)/2 − ρ. Therefore replacing
(

γ
µ−ρ

)
by(

γ
µ−ρ

)
−
(−ρ−1/2

µ−ρ

)
in (4.2) makes the innermost sum vanish. Thus

R =
1

(2T )G+1

(G−1)/2∑
µ=0

(−1)µT 2µ

µ∑
ρ=0

(−1)ρ
∑

0≤ι≤g:
0≤2ρ−ι≤G−g

(−1)ι
(
g

ι

)(
G− g
2ρ− ι

)(
−ρ− 1/2

µ− ρ

)

×
(G−1)/2−ρ∑

γ=0

(−1)γ
(

(G− 1)/2− ρ
γ

)
1

2ρ+ 2γ + 1
.
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Furthermore,
n∑
ν=0

(−1)ν
(
n

ν

)
1

x+ ν
=

n!

x(x+ 1) · · · (x+ n)

(see [6], equation (5 · 41)). Thus

R =
1

2(2T )G+1

(G−1)/2∑
µ=0

T 2µ ((G− 1)/2− µ)!

(µ+ 1/2)(µ+ 3/2) · · · (G/2)

µ∑
ρ=0

(
(G− 1)/2− ρ
(G− 1)/2− µ

)
×

∑
0≤ι≤g:

0≤2ρ−ι≤G−g

(−1)ι
(
g

ι

)(
G− g
2ρ− ι

)
. (4.4)

In Lemma 4.6 below it will be shown that the two inner sums equal

22µ

(
g − (G+ 1)/2 + µ

2µ

)
.

Plugging this in (4.4) proves the proposition. �

Lemma 4.5. For α ∈ C, n ∈ N0, we have
n∑
ν=0

(−1)ν
(
α

ν

)(
n− α− 1

n− ν

)
= (−2)n

(
α

n

)
.

Proof. The following elegant argument is due to E. Wirsing. Using the identity
(
x
k

)
=

(−1)k
(
k−x−1

k

)
gives for the left hand side

(−1)n
n∑
ν=0

(
α

ν

)(
α− ν
n− ν

)
= (−1)n

n∑
ν=0

(
n

ν

)(
α

n

)
= (−1)n 2n

(
α

n

)
.

�

Lemma 4.6. Let G ∈ N be odd, 0 ≤ g ≤ G and 0 ≤ a ≤ (G− 1)/2. Then

(G−1)/2∑
ρ=0

(
(G− 1)/2− ρ

a

) ∑
0≤ι≤g: 0≤2ρ−ι≤G−g

(−1)ι
(
g

ι

)(
G− g
2ρ− ι

)
= (−2)G−2a−1

(
g − a− 1

G− 2a− 1

)
.

Proof. Consider the formal power series

fa(X) :=
∑
ν≥0

(
ν

a

)
Xν = Xa(1−X)−a−1.

Then the (G− 1)-st coefficient of

ga(X) := (1−X)g(1 +X)G−gfa(X
2)

is ∑
0≤ι≤g, 0≤λ≤G−g, ν≥0:

ι+λ+2ν=G−1

(−1)ι
(
g

ι

)(
G− g
λ

)(
ν

a

)
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=
∑

0≤ι≤g, 0≤ρ≤(G−1)/2:
0≤2ρ−ι≤G−g

(−1)ι
(
g

ι

)(
G− g
2ρ− ι

)(
(G− 1)/2− ρ

a

)
,

which is the left hand side of the identity. On the other hand,

ga(X) = X2a(1−X)g−a−1(1 +X)G−g−a−1

and thus its (G− 1)-st coefficient is∑
µ,ν≥0:µ+ν=G−1−2a

(−1)ν
(
g − a− 1

ν

)(
G− g − a− 1

µ

)
= (−2)G−1−2a

(
g − a− 1

G− 1− 2a

)
by Lemma 4.5, which is the right hand side of the identity. �

5. The Eta invariant as a function of T

For any given odd m ∈ N the Eta invariant can be computed from (2.2), Corollary 3.2
and Propositions 2.1 and 4.1–4.4. In particular, it is clear that η(0) is always a Laurent
polynomial in T . The next proposition gives more precise information.

Proposition 5.1. For m ∈ N odd, the Eta invariant η(0) is always a polynomial in T as
long as 0 < T < 4

√
m. In particular,

lim
T→0

η(0) = − 2

m!

m∑
l=0

Bl+1((m+ 1)/2)

(l + 1)!
Φ(l)
(
− m− 1

2

)
.

Proof. It is sufficient to prove that

T 2k ress=k+1/2 DS[µj, Qj](s)

is a polynomial in T for all 0 ≤ j ≤ m− 1, k ≥ 0. Then we have in particular

lim
T→0

η(0) = lim
T→0

η1(0)

and the formula follows form Corollary 3.2.
Fix 0 ≤ j ≤ m − 1, k ≥ 0, and let µ, Q, P1 and P2 have the same meaning as in

Section 4. Propositions 4.1, 4.2 and 4.3 show that it is sufficient to prove that for all
u, v ∈ N0, u+ v ≤ 2m− 1, the sum

S := T 2k
∑

0≤h≤2m

(
−k − 1/2

h

)
ress=h+k+1/2 DI

2[zu1 z
v
2P

h
1 , P2](s)

is a polynomial in T . Set X := m− 1 + 2j, Y := 3(m− 1)− 2j. Then

P1 =
T 4

16
(X − Y )2 − T 2

16
(X2 − 6XY + Y 2) +

1

16
(X − Y )2

+
1

2
z1(2T 2X + Y −X) +

1

2
z2(2T 2Y +X − Y )

and

S =T 2k
∑

α,β,γ≥0:
α+β+γ≤2m

1

α!β!γ!

(T 4

16
(X − Y )2 − T 2

16
(X2 − 6XY + Y 2)

)α
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× (T 2X)β(T 2Y )γ
∑

α+β+γ≤h≤2m

(
−k − 1/2

h

) ∑
δ,ε,ζ≥0:

δ+ε+ζ=h−α−β−γ

h!

δ!ε!ζ!
2−4δ−ε−ζ(−1)ε

× (X − Y )2δ+ε+ζ ress=h+k+1/2 DI
2[zu+β+ε

1 zv+γ+ζ
2 , P2](s).

Thus it is sufficient to prove that for all α, β, γ ≥ 0, α, β, γ ≤ 2m, the sum

T 2(k+α+β+γ)
∑

α+β+γ≤h≤2m

(
−k − 1/2

h

) ∑
δ,ε,ζ≥0:

δ+ε+ζ=h−α−β−γ

h!

δ!ε!ζ!
2−4δ−ε−ζ

× (−1)ε(X − Y )2δ+ε+ζ ress=h+k+1/2 DI
2[zu+β+ε

1 zv+γ+ζ
2 , P2](s)

is a polynomial in T . From Proposition 4.4 it follows that the residue does not vanish at
most for h + k + 1/2 = (u + v + β + γ + ε + ζ + 2)/2. Introducing this new summation
condition gives δ = −h−2k−α+1+u+v and 2δ+ε+ζ = −2k−2α−β−γ+1+u+v =const.
From now on we will use the convention that summands are 0 which contain factorials ω!
or binomial coefficients

(
η
ω

)
with ω < 0. Therefore we must prove that the sum

U :=T 2(k+α+β+γ)
∑

α+β+γ≤h≤2m:
δ:=−h−2k−α+1+u+v

1

δ!

(
−k − 1/2

h

)

×
∑
ε,ζ≥0:

ε+ζ=2h+2k−β−γ−u−v−1

h!

ε!ζ!
22h(−1)ε ress=h+k+1/2 DI

2[zu+β+ε
1 zv+γ+ζ

2 , P2](s)

is a polynomial in T . From Proposition 4.4 it follows that

U =
k!T 2(α+β+γ)

2(2k)!

∑
α+β+γ≤h≤2m

(δ:=−h−2k−α+1+u+v)

(−1)h

T 2hδ!

h+k−1∑
µ=0

T 2µ (h+ k − 1− µ)!(2µ)!

µ!

×
∑
ε,ζ≥0:

ε+ζ=2h+2k−β−γ−u−v−1

(−1)ε

ε!ζ!

(
u+ β + ε− h− k + µ

2µ

)
. (5.1)

For m,n ∈ N0, z ∈ C, we have the identity

n∑
ν=0

(−1)ν
(
n

ν

)(
ν + z

m

)
= (−1)n

(
z

m− n

)
(5.2)

(see, e.g., [6], equation (5 · 24)). If 2h + 2k − β − γ − u − v − 1 < 0, the innermost sum
in (5.1) is empty. In the opposite case, equation (5.2) gives the value

(−1)β+γ+u+v+1

(2h+ 2k − β − γ − u− v − 1)!

(
u+ β − h− k + µ

2µ− 2h− 2k + β + γ + u+ v + 1

)
.

Thus in any case,

U =
(−1)β+γ+u+v+1k!T 2(α+β+γ)

2(2k)!

∑
α+β+γ≤h≤2m
0≤µ≤h+k−1

(−1)hT 2(µ−h)(h+ k − 1− µ)!

(−h− 2k − α + 1 + u+ v)!
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× (2µ)!

µ!(2h+ 2k − β − γ − u− v − 1)!

(
u+ β − h− k + µ

2µ− 2h− 2k + β + γ + u+ +v + 1

)
.

In order to prove that U is a polynomial in T we must show that, for p ∈ N, p > α+β+γ,
the (α + β + γ − p)-th coefficient of U vanishes, i.e.(

u+ β − k − p
−2p− 2k + β + γ + u+ v + 1

)
×
∑
h∈Z

(−1)h(2h− 2p)!

(−h− 2k − α + 1 + u+ v)!(h− p)!(2h+ 2k − β − γ − u− v − 1)!
= 0. (5.3)

The various summation conditions are implied by the convention on factorials and bino-
mial coefficients. If d := −2p− 2k + β + γ + u + v + 1 < 0 then the binomial coefficient
vanishes. In the opposite case, we have n := −p − 2k + 1 − α + u + v > d ≥ 0 since
p > α + β + γ. Thus (5.3) is equivalent to∑

h∈Z

(−1)h
(

n

h− p

)(
2h− 2p

d

)
= 0.

This last identity follows from (4.3) since d < n. �

6. A conjecture

Numerical calculations for the first few m showed an astonishing fact: In all cases the
Eta invariant η(0) not only is a polynomial in T but it is of the form cm(1−T 2)m+1. The
constant cm can easily be deduced from Proposition 5.1. Thus we make the

Conjecture. For m ∈ N odd and 0 < T < 4
√
m, we have

η(0) = cm(1− T 2)m+1,

where

cm := − 2

m!

m∑
l=0

Bl+1((m+ 1)/2)

(l + 1)!
Φ(l)
(
− m− 1

2

)
.
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