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Abstract. Almost periodic functions and integrable functions show striking similari-
ties. In this paper the convergence of the Fourier series of almost periodic functions on
Z is investigated and Parseval’s equation is generalized. The underlying philosophy is
to identify theorems for the space of q-integrable functions Lq[0, 1] which have an ana-
logue in Aq. Theorems relying on more abstract functional analytic properties have the
greatest chance to be transferable.

1. Introduction

For f : Z→ C, 1 ≤ q <∞, define

‖f‖q :=

(
lim sup
N→∞

1

2N + 1

∑
|n|≤N

|f(n)|q
)1/q

∈ [0,∞], ‖f‖u := sup
{
|f(n)|

∣∣n ∈ Z}.
Let A be the complex vector space generated by the functions eα, α ∈ R, where eα(n) :=
e(αn) := e2πiαn, n ∈ Z, α ∈ R. f is called q-almost periodic (uniformly almost periodic)
if for every ε > 0 there is some g ∈ A such that ‖f − g‖q ≤ ε (‖f − g‖u ≤ ε). The set
Aq of all these functions becomes a Banach space with norm ‖ · ‖q if functions f1, f2 with
‖f1−f2‖q = 0 are identified. For the space Au of uniformly almost periodic functions this
is unnecessary. For 1 ≤ p ≤ q <∞, Au ⊆ Aq ⊆ Ap ⊆ A1. For f ∈ A1, the mean value

M(f) := lim
N→∞

1

2N + 1

∑
|n|≤N

f(n)

exists. The numbers f̂(α) := M(fe−α), α ∈ R/Z, are called the Fourier coefficients of f .
For the theory of almost periodic functions on N, see [10]; on R, see [1]; and on general
topological groups, see [7].

The main tool in this paper is the Cauchy convolution f × g of two functions in A1. In
section 2 its functional analytic properties are listed. An immediate conclusion is

Theorem 1.1. Let f ∈ Ap, g ∈ Aq, 1/p + 1/q = 1 (p, q ∈ [1,∞) ∪ {u}) and∑
α∈R/Z |f̂(α)ĝ(−α)| <∞. Then for n ∈ Z,

lim
N→∞

1

2N + 1

∑
|m|≤N

f(m+ n)g(m) =
∑
α∈R/Z

f̂(α)ĝ(−α)eα(n).
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In section 3 projections of almost periodic functions onto subsums of their Fourier series
are constructed. This is the key to the following three results. Let D be the space of all
periodic functions on Z, and Dq its closure in Aq.

Theorem 1.2. For f ∈ Dq (q ∈ [1,∞) ∪ {u}),

lim
R→∞

∑
r|R!, 1≤a≤r: (a,r)=1

f̂
(a
r

)
ea/r = f

in Dq.

This is a generalization of a result of Hildebrand ([10], Chap. VI, Theorem 5.1). In the
case of q-integrable functions (1 < q <∞) a theorem of M. Riesz shows that much more
is true: f is the Lq-limit of its Fourier series when the latter is summed in natural order
(see [3], 12.10.1).

Corollary 1.3. For f ∈ Dp, g ∈ Dq, 1/p+ 1/q = 1 (p, q ∈ [1,∞) ∪ {u}),

lim
R→∞

∑
r|R!, 1≤a≤r: (a,r)=1

f̂
(a
r

)
ĝ
(a
r

)
= M(fg).

Again in the case of integrable functions and 1 < p, q <∞, much more is true (see [3],
10.5.4).

Theorem 1.4. Let f ∈ Ap (p ∈ [1,∞)∪{u}) and assume that the elements 0 6= α ∈ R/Z
with f̂(α) 6= 0 are linearly independent over Z. Then

f =
∑
α∈R/Z

f̂(α)eα

in Ap. If g ∈ Aq, 1/p+ 1/q = 1, then

M(fg) =
∑
α∈R/Z

f̂(α)ĝ(α),

the sum being absolutely convergent.

This result is already known for uniformly almost perodic functions on R ([1], Chap. I,
§ 10.1).

There is an analogous notion of almost periodicity for measurable functions f : [0,∞)→
C. Let

∆(x) :=
∑
n≤x

d(n)− x(log x+ 2γ − 1), x ≥ 1,

be the remainder in Dirichlet’s divisor problem, and

F (t) := t−1/2∆(t2), t ≥ 1.

Combining the results of Heath-Brown [5] with the reasoning in the proof of Theorem 1.4
gives
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Theorem 1.5. Let K > 2 such that∫ X

0

|∆(x)|Kdx�ε X
1+K/4+ε (1.1)

for every ε > 0 (for example, K = 28/3 is allowed). Then for q ∈ N, q < K,

M(F q) = 2(2π
√

2)−q
∑

0<p<q/2

(
q

p

)
cos

(
π

4
(q − 2p)

)
S(p, q)

if q is odd; if q is even, there is the additional summand

(2π
√

2)−q
(
q

q/2

)
S(q/2, q).

Here

S(p, q) :=
∑ d(m1) · · · d(mq)

(m1 · · ·mq)3/4
, 0 < p ≤ q/2,

where m1, . . . ,mq run through all natural numbers such that
√
m1 + · · ·+√mp =

√
mp+1 +

· · ·+√mq.

The existence of M(F q) was already proved by Heath-Brown [5]. In cases q = 3 and 4,
Tsang [11] even got results about the rate of convergence and gave series representations
for M(F q). Theorem 1.5 extends these representations to all cases covered in [5].

The next result is proved by transfering the result of M. Riesz mentioned above to a
special type of almost periodic functions.

Theorem 1.6. Let F : [0, 1] → C be Riemann integrable, α ∈ R \ Q and define f(n) :=
F ({αn}), n ∈ Z. Let

F̂ (k) :=

∫ 1

0

F (x)e(−kx) dx, k ∈ Z,

be the Fourier coefficients of F .

(a) For 1 < q <∞, f ∈ Aq and

f = lim
K→∞

∑
|k|≤K

F̂ (k)ekα

in Aq.
(b) If g ∈ Ap, 1 < p <∞, then

M(fg) = lim
K→∞

∑
|k|≤K

F̂ (k)ĝ(kα).

Note that for p ≥ 2 the second part can be proved without using the theorem of
M. Riesz.

Corollary 1.7. Let g ∈ Ap, 1 < p <∞, α ∈ R \Q, and 0 ≤ a ≤ b ≤ 1. Then

lim
N→∞

1

2N + 1

∑
|n|≤N : {αn}∈[a,b]

g(n) = (b− a)M(g) +
∑
k 6=0

e(kb)− e(ka)

2πik
ĝ(kα),
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where the series is to be summed symmetrically. In particular for g ∈ Dp,

lim
N→∞

1

2N + 1

∑
|n|≤N : {αn}∈[a,b]

g(n) = (b− a)M(g).

The second part of this corollary can be proved without appealing to M. Riesz’ theorem.
The last two theorems give further conditions under which Parseval’s equation with

the natural order of summation is true. The first condition restricts the growth of the
Fourier coefficients of one of the functions and thus allows to apply the Hausdorff-Young
inequality. The second condition restricts the space of the permitted almost periodic
functions and thus Hildebrand’s deep theorem ([10], Chap. 5, Theorem 1.2) can be applied.

Theorem 1.8. Let 1 ≤ p ≤ 2, 2 ≤ q <∞ or q = u, 1/p+ 1/q = 1, f ∈ Ap, g ∈ Aq and∑
α∈R/Z |ĝ(α)|p <∞. Then

M(fg) =
∑
α∈R/Z

f̂(α)ĝ(α),

where the series is absolutely convergent.

For r ∈ N, let

cr :=
∑

1≤a≤r: (a,r)=1

ea/r

be the r-th Ramanujan sum. Let B be the complex vector space generated by the Ra-
manujan sums and Bq its closure in Aq. For f ∈ A1,

ar(f) :=
1

ϕ(r)
M(fcr)

is called the r-th Ramanujan coefficient of f .

Theorem 1.9. Let f ∈ Bp, g ∈ Bq, 1/p + 1/q = 1 (p, q ∈ [1,∞) ∪ {u}). Then for
a ∈ Z \ {0},

lim
N→∞

1

2N + 1

∑
|n|≤N

f(n+ a)g(n) =
∑
r≥1

ar(f)ar(g)cr(a).

The left hand side, as a function of a, is called the correlation function of f and g. For
related results, see Schwarz [8], [9].

Acknowledgements. I would like to thank the referees for their comments on this
paper which led to substantial improvements.

2. The Cauchy Convolution

In sections 2, 3 and 6 some results from Fourier theory are cited which are well known
in the general theory of compact groups. In the present situation it is also possible to give
straightforward elementary proofs for them. Instead of doing this I give some lemmas
which might serve as hints how to prove the results elementarily.

For f, g : Z→ C, N ∈ N, define

CN(f, g)(n) :=
1

2N + 1

∑
|m|≤N

f(n−m)g(m), n ∈ Z.
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Theorem 2.1. (a) For f ∈ Ap, g ∈ A1 (p ∈ [1,∞) ∪ {u}),

f × g := lim
N→∞

CN(f, g) (2.1)

exists in Ap, and

‖f × g‖p ≤ ‖f‖p‖g‖1. (2.2)

(b) For f ∈ Ap, g ∈ Aq, 1/p + 1/q = 1 (p, q ∈ [1,∞) ∪ {u}), f × g can be chosen to
lie in Au, such that

f × g(n) = lim
N→∞

CN(f, g)(n), n ∈ Z, ‖f × g‖u ≤ ‖f‖p‖g‖q.

(c) For f, g ∈ A1, f × g = g × f in A1.

(d) For f, g ∈ A1, f̂ × g = f̂ · ĝ.

The next theorem gives an important approximation property of the convolution.

Theorem 2.2. For every f ∈ Ap (p ∈ [1,∞)∪{u}) and ε > 0 there is some g ∈ Au such
that

g ≥ 0, M(g) = 1, ‖f − f × g‖p ≤ ε.

In the case of Lp[0, 1]-spaces g can be choosen independently of f in the following sense:
If (gn)n≥1 is a Dirac sequence then ‖f − f × gn‖p → 0 as n→∞ for every p-integrable f .
In the case of Ap it can be shown that this stronger version is false.

Corollary 2.3. For every f ∈ Ap (p ∈ [1,∞)∪ {u}) and ε > 0 there is some g ∈ A with

‖f − g‖p ≤ ε and the property: If f̂(α) = 0 for some α ∈ R/Z, then ĝ(α) = 0.

Corollary 2.4. Let f ∈ Ap (p ∈ [1,∞) ∪ {u}) and f̂ = 0. Then f = 0 in Ap.

Proof of Theorem 1.1.

h :=
∑
α∈R/Z

f̂(α)ĝ(−α)eα ∈ Au

since the series is absolutely and uniformly convergent. Define g∗(n) := g(−n), n ∈ Z.
By Theorem 2.1(d),

f̂ × g∗(α) = f̂(α)ĝ∗(α) = f̂(α)ĝ(−α) = ĥ(α), α ∈ R/Z.

By Theorem 2.1(b), we can choose f × g∗ in Au with

lim
N→∞

CN(f, g∗)(n) = f × g∗(n), n ∈ Z.

By Corollary 2.4, f × g∗ = h. Thus for n ∈ Z,∑
α∈R/Z

f̂(α)ĝ(−α)eα(n) = h(n) = f × g∗(n) = lim
N→∞

1

2N + 1

∑
|m|≤N

f(n−m)g(−m).

�
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3. A projector

Let L ⊆ R be a finitely generated Z-module with Z ⊆ L. Let U := L ∩Q. L is finitely
generated and torsion free. Thus U has the same properties. Any two elements in U are
Z-linearly dependent. Therefore U is cyclic with some generator a/t, a, t ∈ N, (a, t) = 1.
Since 1 ∈ U , there is some b ∈ Z with ba/t = 1. Therefore a|ab = t and a = 1. L/U is
finitely generated and torsion free. Consequently there are β1, . . . , βr ∈ L with

L/U =
r⊕

ρ=1

Z · (βρ mod U)

and thus

L =
r⊕

ρ=1

Z · βρ ⊕ Z ·
1

t
.

For N ∈ N, define

KN :=
1

(N + 1)r

∑
0≤K1,...,Kr≤N

∑
|k1|≤K1,...,|kr |≤Kr, 0≤τ≤t−1:

α:=k1β1+···+krβr+τ/t

eα ∈ A.

Lemma 3.1. KN ≥ 0, M(KN) = 1, ‖KN‖1 = 1 .

For f ∈ A, define TLf :=
∑

α∈L/Z f̂(α)eα.

Lemma 3.2. For f ∈ A, limN→∞C(f,KN) = TLf in Au.

Lemma 3.3. For p ∈ [1,∞) ∪ {u} and f ∈ A, ‖TLf‖p ≤ ‖f‖p.

TLf is the projection of f onto a subsum of its Fourier series. The lemma above shows
in particular that this projection is Lipschitz continuous.

Theorem 3.4. Let L ⊆ R be a finitely generated Z-module with Z ⊆ L and p ∈ [1,∞) ∪
{u}. There is a bounded linear operator T

(p)
L : Ap → Ap with the properties:

(a) ‖T (p)
L ‖ ≤ 1

(b) If f ∈ Ap then
̂
T

(p)
L f(α) = f̂(α) for α ∈ L/Z and

̂
T

(p)
L f(α) = 0 otherwise.

Proof of Theorem 1.2. For N ∈ N, define

LN :=
{a
r

∣∣∣ a ∈ Z, r ∈ N, (a, r) = 1, r|N
}
.

LN is a Z-module in R with Z ⊆ LN . For g ∈ Dq, let

gN :=
∑

r|N, 1≤a≤r: (a,r)=1

ĝ
(a
r

)
ea/r ∈ D.

If α ∈ R/Z, Theorem 3.4(b) gives
̂
T

(q)
LN
g(α) = ĝ(α) for α ≡ a/rmod 1, r|N , 1 ≤ a ≤ r,

(a, r) = 1, and
̂
T

(q)
LN
g(α) = 0 otherwise. Thus

̂
T

(q)
LN
g = ĝN and T

(q)
LN
g = gN in Aq by

Corollary 2.4. For f ∈ Dq, ε > 0, choose g ∈ D with ‖f − g‖q ≤ ε. Choose R0 ∈ N with{
α ∈ R/Z

∣∣ ĝ(α) 6= 0
}
⊆ LR0!/Z.
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Then for R ≥ R0, gR! = g, and by Theorem 3.4(a)

‖f − fR!‖q ≤ ‖f − g‖q + ‖(g − f)R!‖q ≤ ε+ ‖T (q)
LR!

(g − f)‖q ≤ 2ε.

�
Proof of Corollary 1.3. Hölder’s inequality gives for R ∈ N∣∣∣∣M(fg)−

∑
r|R!, 1≤a≤r: (a,r)=1

f̂
(a
r

)
ĝ
(a
r

)∣∣∣∣ =

∣∣∣∣M((f − ∑
r|R!, 1≤a≤r: (a,r)=1

f̂
(a
r

)
ea/r

)
g

)∣∣∣∣
≤

∥∥∥∥f − ∑
r|R!, 1≤a≤r: (a,r)=1

f̂
(a
r

)
ea/r

∥∥∥∥
p

‖g‖q.

By Theorem 1.2, the right hand side converges to 0 as R→∞. �
Proof of Theorem 1.4. Let

A :=
{

0 6= α ∈ R/Z
∣∣ f̂(α) 6= 0

}
=
⋃
j≥1

Aj,

where A1 ⊆ A2 ⊆ · · · is an increasing sequence of finite sets. Let Lj be the Z-module
generated by Aj and 1. For g ∈ Ap with

{
0 6= α ∈ R/Z

∣∣ ĝ(α) 6= 0
}
⊆ A, define

gj :=
∑

α∈Aj∪{0}

ĝ(α)eα ∈ A.

If α /∈ Lj/Z,
̂
T

(p)
Lj
g(α) = 0 = ĝj(α). The same holds for α ∈ Lj/Z, ĝ(α) = 0. Now let

α ∈ Lj/Z, ĝ(α) 6= 0. Then α = 0 mod 1 or α ∈ A, and α =
∑

β∈Aj cββ, cβ ∈ Z for β ∈ Aj.
Since the elements of A are Z-linearly independent, α ∈ Aj in case α 6= 0 mod 1. Thus
̂
T

(p)
Lj
g(α) = ĝ(α) = ĝj(α). If follows that

̂
T

(p)
Lj
g = ĝj and T

(p)
Lj
g = gj in Ap.

Now let ε > 0. By Corollary 2.3 there is some g ∈ A with

‖f − g‖p ≤ ε, B := {0 6= α ∈ R/Z | ĝ(α) 6= 0} ⊆ A.

Choose j0 ∈ N with B ⊆ Aj0 . For j ≥ j0, gj = g and thus

‖f − fj‖p ≤ ‖f − g‖p + ‖(g − f)j‖p ≤ ε+ ‖T (p)
Lj

(g − f)‖p ≤ 2ε

by Theorem 3.4(a). This proves the first part of Theorem 1.4. The second part is proved
just as Corollary 1.3. �

4. Moments of the remainder in the divisor problem

For a measurable function f : R→ C, the p-norm (1 ≤ p <∞) is defined by

‖f‖p :=

(
lim sup
X→∞

1

2X

∫ X

−X
|f(x)|pdx

)1/p

and the u-norm by
‖f‖u := sup

{
|f(x)|

∣∣ x ∈ R}.
The definition of the space Ap

R
of p-almost periodic functions on R (p ∈ [1,∞) ∪ {u}) is

completely analogous to that of Ap if A is replaced by AR which contains all trigonometric
polynomials defined on R. The theorems and proofs of sections 2 and 3 can now be
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translated verbally into this new situation. All we have to do is to replace sums by the
appropriate integrals. In particular, the analogue of Theorem 3.4 is

Theorem 4.1. Let L ⊆ R be a finitely generated Z-module and p ∈ [1,∞) ∪ {u}. There

is a bounded linear operator T
(p)
L : Ap

R
→ Ap

R
with the properties:

(a) ‖T (p)
L ‖ ≤ 1

(b) If f ∈ Ap
R

then
̂
T

(p)
L f(α) = f̂(α) for α ∈ L and

̂
T

(p)
L f(α) = 0 otherwise.

Let Ap[0,∞) be the space of p-almost periodic functions on [0,∞) which is defined simi-

larly.

Proposition 4.2. For p ∈ [1,∞) ∪ {u} the restriction

ι : Ap
R
→ Ap[0,∞), f 7→ f � [0,∞)

is an isometric isomorphism. For f ∈ Ap
R

, f̂ = ι̂(f).

Proof. (a) Let f ∈ AR. It is shown that ‖f‖p,R = ‖f‖p,[0,∞). First let 1 ≤ p < ∞ and

ε > 0. Approximate z 7→ |z|p on
{
z ∈ C

∣∣ |z| ≤ ‖f‖u,R} by a polynomial P (<z,=z) with

error ≤ ε. Let g := P (<f,=f). Then
∣∣|f(x)|p − g(x)

∣∣ ≤ ε for x ∈ R and therefore∣∣‖f‖pp,R −MR(g)
∣∣ ≤MR

(∣∣|f |p − g∣∣) ≤ ε,∣∣‖f‖pp,[0,∞) −M[0,∞)(g)
∣∣ ≤M[0,∞)

(∣∣|f |p − g∣∣) ≤ ε.

On the other hand, g ∈ AR and therefore MR(g) = M[0,∞)(g). This gives
∣∣‖f‖pp,R −

‖f‖pp,[0,∞)

∣∣ ≤ 2ε for all ε > 0 and hence the result.

Now let p = u. Let A := {α ∈ R | f̂(α) 6= 0}. Since n 7→ (eα(n))α∈A, is a bounded
sequence in C|A| there is a sequence 1 ≤ n1 < n2 < · · · in N with nk+1 − nk → ∞ and
(eα(nk))α∈A → z ∈ C|A| as k → ∞. Then eα(nk+1 − nk) = eα(nk+1)/eα(nk) → 1 as
k →∞. Let x ∈ Z. Then for k sufficiently large,

|f(x)| ≤ |f(x)− f(x+ nk+1 − nk)|+ |f(x+ nk+1 − nk)|
≤

∑
α∈A

|f̂(α)| · |1− eα(nk+1 − nk)|+ ‖f‖u,[0,∞).

As k →∞, |f(x)| ≤ ‖f‖u,[0,∞) for x ∈ Z, and hence the result.
(b) Let f ∈ Ap

R
. Choose a sequence (gj)j≥1 in AR with ‖f − gj‖p,R → 0 as j → ∞.

Then ‖f‖p,[0,∞) = limj→∞ ‖gj‖p,[0,∞) = limj→∞ ‖gj‖p,R = ‖f‖p,R. Thus ι is isometric and
in particular injective.

Let f ∈ Ap[0,∞). Choose a sequence (gj)j≥1 in AR with ‖f − gj‖p,[0,∞) → 0 as j → ∞.

Then (gj)j≥1 is a Cauchy sequence in Ap[0,∞) and by (a) also in Ap
R
. Let f ∗ := limj→∞ gj

in Ap
R
. Then in particular ‖f ∗ − gj‖p,[0,∞) = ‖f ∗ − gj‖p,R → 0 as j → ∞ and therefore

ι(f ∗) = limj→∞ gj = f in Ap[0,∞). Thus ι is surjective.

(c) Let f ∈ Ap
R
, α ∈ R. Choose a sequence in AR with ‖f − gj‖p,R → 0 as j → ∞.

Then ‖f − gj‖p,[0,∞) → 0 and therefore

f̂(α) = lim
j→∞

MR(gje−α), ι̂(f)(α) = lim
j→∞

M[0,∞)(gje−α).
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Since gje−α ∈ AR, MR(gje−α) = M[0,∞)(gje−α). Hence f̂(α) = ι̂(f)(α). �

This proposition shows that Theorem 4.1 holds verbally also for functions in Ap[0,∞),

p ∈ [1,∞) ∪ {u}.
Proof of Theorem 1.5. Heath-Brown ([5], Section 5, Equation (5.2)) proved that F ∈
A2

[0,∞) and

F̂ (±2
√
n) =

d(n)

2π
√

2n3/4
e∓iπ/4, n ∈ N,

and F̂ (α) = 0 otherwise. He also showed ([5], Lemma 4) that if (1.1) holds for some
K > 2 and arbitrary ε > 0 then ‖F‖q <∞ for all 1 ≤ q < K. A standard argument then
shows that F ∈ Aq[0,∞) for 1 ≤ q < K. According to Besicovitch [2], the square roots of

positive squarefree integers are linearly independent over Q. For N ≥ 1, define

LN :=
⊕

n≤N :µ(n)2=1

Z · 2
√
n,

FN :=
∑

n≤N :µ(n)2=1

∑
r∈Z\{0}

d(nr2)

2π
√

2n3/4|r|3/2
e−sign(r)iπ/4e2r

√
n. (4.1)

Since the series is absolutely convergent, FN ∈ Au[0,∞). If α ∈ R \ LN , Theorem 4.1 gives

̂
T

(q)
LN
F (α) = 0 = F̂N(α). The same holds for α ∈ LN with F̂ (α) = 0. If α ∈ LN with

F̂ (α) 6= 0, then α = 2r
√
n, r ∈ Z\{0}, n ∈ N, µ(n)2 = 1, and

̂
T

(q)
LN
F (α) = F̂ (α) = F̂N(α).

Thus
̂
T

(q)
LN
F = F̂N and T

(q)
LN
F = FN in Aq[0,∞).

For f ∈ A[0,∞), by the definition of T
(q)
LN

as an extension of TLN , T
(q)
LN
f = TLNf =∑

α∈LN f̂(α)eα in A(q)
[0,∞).

Next FN → F in Aq[0,∞) as N → ∞ is proved. For ε > 0 choose f ∈ A[0,∞) with

‖F − f‖q,[0,∞) ≤ ε and f̂(α) = 0 for all α ∈ R with F̂ (α) = 0. Choose N0 ≥ 1 such that

{α ∈ R | f̂(α) 6= 0} ⊆ LN0 . Then for N ≥ N0,

‖F − FN‖q,[0,∞) ≤ ‖F − f‖q,[0,∞) + ‖T (q)
LN
f − T (q)

LN
F‖q,[0,∞) ≤ 2ε.

It follows that F q
N → F q in A1

[0,∞) and thus M[0,∞)(F
q
N) → M[0,∞)(F

q) as N → ∞. Now

let q ∈ N. Since (4.1) is absolutely convergent,

M[0,∞)(F
q
N) =

∑ d(|n1|) · · · d(|nq|)
(2π
√

2)q|n1 · · ·nq|3/4
e−iπ(sign(n1)+···sign(nq))/4,

where the sum runs through all n1, . . . , nq ∈ Z \ {0} with sign (n1)
√
|n1| + · · · +

sign (Nq)
√
|nq| = 0 and K(n1), . . . , K(nq) ≤ N . Here K(n) denotes the squarefree kernel

of |n|.
The series where the condition on the squarefree kernels is removed is absolutely con-

vergent. To see this split up the range of summation corresponding to the subscripts j for
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which the K(|nj|) have the same values. Using Besicovitch’s result shows that the series
has the majorant

q∑
l=1

∑
T1∪̇···∪̇Tl={1,...,q}

∑
s1,...,sl∈N squarefree, pairwise distinct∑

r1,...,rq∈Z\{0}:
∑
κ∈Tλ

rκ=0 for 1≤λ≤l

d(s1r
2
1) · · · d(sqr

2
q)

|s|T1|
1 · · · s|Tl|l r2

1 · · · r2
q |3/4

.

For the innermost sum to be non-empty it is necessary that |Tλ| ≥ 2 for all λ. Thus for
fixed T1, . . . , Tl the two innermost sums have the majorant∑

s1,...,sl∈N, r1,...,rq∈Z\{0}

d(s1r
2
1) · · · d(sqr

2
q)

|s2
1 · · · s2

l r
2
1 · · · r2

q |3/4
,

which is clearly convergent. Thus

M[0,∞)(F
q) =

∑
n1,...,nq∈Z\{0}:

sign(n1)
√
|n1|+···+sign(nq)

√
|nq |=0

d(|n1|) · · · d(|nq|)
(2π
√

2)q|n1 · · ·nq|3/4
e−πi(sign(n1)+···+sign(nq))/4.

Splitting up the range of summation corresponding to the subscripts j for which nj has
the same sign finishes the proof. �

In particular, for q = 3,

M[0,∞)(F
3) =

3

16π3
S(1, 3)

and for q = 4,

M[0,∞)(F
4) =

3

32π4
S(2, 4)

corresponding to the results in [11].

5. Transfer of M. Riesz’ theorem

Let the assumptions of Theorem 1.6 be fulfilled. To prove (a), let 1 < q <∞ and define

∆K :=

∣∣∣∣F − ∑
|k|≤K

F̂ (k)ek

∣∣∣∣q.
M. Riesz’ theorem ([3], 12.10.1) states that∫ 1

0

∆K(x) dx→ 0 as K →∞. (5.1)

Since the sequence (αn)n∈Z is uniformly distributed modulo 1 and ∆K is Riemann inte-
grable the Weyl criterion ([6], Chapter 1, Corollary 1.1) gives

lim
N→∞

1

2N + 1

∑
|n|≤N

∆K({αn}) =

∫ 1

0

∆K(x) dx, K ∈ N. (5.2)
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By definition, the left hand side equals
∥∥f −∑|k|≤K F̂ (k)ekα

∥∥q
q
. Thus (5.1) and (5.2) give∥∥∥∥f − ∑

|k|≤K

F̂ (k)ekα

∥∥∥∥
q

→ 0 as K →∞. (5.3)

This proves (a) and f̂(β) = F̂ (k) for β ≡ kαmod 1 (k ∈ Z) and f̂(β) = 0 otherwise.
To prove (b), let 1 < p <∞ and g ∈ Ap. In (a), choose 1 < q <∞ with 1/p+ 1/q = 1.

Then for K ∈ N,∣∣∣∣M(fg)−
∑
|k|≤K

F̂ (k)ĝ(kα)

∣∣∣∣ =

∣∣∣∣M((f − ∑
|k|≤K

F̂ (k)ekα

)
g

)∣∣∣∣
≤

∥∥∥∥f − ∑
|k|≤K

F̂ (k)ekα

∥∥∥∥
q

‖g‖p,

which together with (5.3) proves (b). �
Proof of Corollary 1.7. Take F to be the characteristic function of the interval [a, b]. Then

F̂ (k) =
e(−ka)− e(−kb)

2πik
, k ∈ Z \ {0}, F̂ (0) = b− a.

Applying Theorem 1.6(b) gives the first result of Corollary 1.7. If g ∈ Dp, then ĝ(kα) = 0
for k ∈ Z \ {0} and thus the second result follows. �

6. A Hausdorff-Young inequality

The classical Hausdorff-Young inequality is formulated for periodic trigonometric poly-
nomials ([3], 13.5.1 or [4], Chap. 23). Fortunately the proof via the Riesz-Thorin Inter-
polation Theorem can be easily generalized to the present situation.

Proposition 6.1. Let 1 ≤ p ≤ 2, 1/p+ 1/q = 1 (q = u if p = 1). Then for f ∈ A,

‖f‖q ≤
( ∑
α∈R/Z

|f̂(α)|p
)1/p

.

Corollary 6.2. For 1 ≤ p ≤ 2, 1/p+ 1/q = 1, f ∈ Aq,

‖f‖q ≤
( ∑
α∈R/Z

|f̂(α)|p
)1/p

.

Proof of Theorem 1.8. If suffices to show that g is the limit of its Fourier series in Aq.
Let

A =
{
α ∈ R/Z

∣∣ ĝ(α) 6= 0
}

=
∞⋃
j=1

Aj (6.1)

with A1 ⊆ A2 ⊆ · · · and |Aj| <∞ for j ≥ 1. Corollary 6.2 gives∥∥∥∥g −∑
α∈Aj

ĝ(α)eα

∥∥∥∥
q

≤
( ∑
α∈A\Aj

|ĝ(α)|p
)1/p

.
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Since ( ∑
α∈R/Z

|ĝ(α)|p
)1/p

<∞,

the right hand side converges to 0 as j →∞. �

7. Proof of Theorem 1.9

Define f̃(n) := f(−n), n ∈ Z. According to Theorem 2.1(b), f̃ × g can be chosen to lie
in Au such that for a ∈ Z \ {0},

f̃ × g(−a) = lim
N→∞

CN(f̃ , g)(−a) = lim
N→∞

1

2N + 1

∑
|n|≤N

f(a+ n)g(n). (7.1)

On the other hand, by Theorem 2.1(d),

̂̃f × g(α) = ̂̃f(α)ĝ(α) for α ∈ R/Z. (7.2)

From the definition of Br, Corollary 2.3 and Theorem 1.2 it follows that for h ∈ Ar,
r ∈ [1,∞) ∪ {0},

h ∈ Br ⇔ ĥ(α) = 0 for α 6∈ Q/Z,
ĥ
(
a
r

)
= ĥ

(
b
r

)
for a, b ∈ Z, r ∈ N, (a, r) = (b, r) = 1.

(7.3)

From (7.2), (7.3) and f ∈ Bp, g ∈ Bq, it follows that f̃ × g ∈ Bu. Hildebrand’s theorem
([10], Chap. 5, Theorem 1.2) gives

f̃ × g(−a) =
∑
r≥1

ar(f̃ × g)cr(−a), a ∈ Z \ {0}. (7.4)

(Hildebrand states the theorem for Bu-functions on N rather than Z but with Proposi-
tion 4.2 it can be lifted to the present situation.) Finally, for r ∈ N, (7.2) and (7.3)
give

ar(f̃ × g) =
1

ϕ(r)
M((f̃ × g)cr) = ̂̃f × g

(
1

r

)
= ̂̃f (1

r

)
ĝ

(
1

r

)
= ar(f)ar(g). (7.5)

From (7.1), (7.4) and (7.5) the theorem follows. �
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