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1. Introduction

Much is known about the statistical distribution of class numbers of binary quadratic
forms and quadratic fields. Let d ≡ 0, 1 mod 4 and d not a perfect square. Define h(d) as
the number of equivalence classes of primitive binary quadratic forms with discriminant
d (and positive definite in case d < 0). For d > 0, let εd := (ud + vd

√
d)/2, where

(ud, vd) is the fundamental solution of Pell’s equation u2 − dv2 = 4. If d is a fundamental

discriminant then h(d) is also the class number of Q(
√
d) in the narrow sense.

Gauß [8] conjectured and Mertens [13] and Siegel [20] later proved that∑
0<d≤x

h(d) log εd ∼
π2

18ζ(3)
x3/2,

∑
0>d≥−x

h(d) ∼ π

18ζ(3)
x3/2.

Chowla and Erdös [4] proved that there is a continuous distribution function F such that
for all z ∈ R,

lim
x→∞

1

x/2
#
{

0 < d ≤ x
∣∣∣ h(d) log εd

d1/2
≤ ez

}
= F (z),

lim
x→∞

1

x/2
#
{

0 > d ≥ −x
∣∣∣ h(d)π

|d|1/2
≤ ez

}
= F (z).

Elliott [6] showed that F ∈ C∞(R) and it has the characteristic function

Ψ(t) =
∏
p

(1

p
+

1

2

(
1− 1

p

)(
1− 1

p

)−it
+

1

2

(
1− 1

p

)(
1 +

1

p

)−it)
, t ∈ R.

Barban [1] proved that for q ∈ N, the q − th moment βq of F (log z) exists and that

lim
x→∞

1

x/2

∑
0<d≤x

(h(d) log εd
d1/2

)q
= βq =

∑
n≥1

ϕ(n)dq(n
2)

2n3
,

lim
x→∞

1

x/2

∑
0>d≥−x

(h(d)π

|d|1/2
)q

= βq,

where ϕ is Euler’s totient function and dq(n) is the number of ways one can write n as
a product of q positive integers. For all these results, error term estimates can be given
(see [3], [9], [19], [21], [24]).
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It seems that for number fields of higher degree, no analoguous results are known. The
Brauer-Siegel Theorem (see, e.g., [12], Chapter XVI) gives a rough idea of the size of the
class number times the regulator: Let k range over a sequence of number fields which are
galois over Q such that n/ log d→ 0, where n := [k : Q] is the degree and d = dk/Q is the
absolute discriminant of k. Let hk be the class number of k and Rk its regulator. Then

log(hkRk)

log d1/2
→ 1.

When looking for more precise information on the value distribution of

hkRk

d1/2
,

we run into the problem of how to effectively parametrize number fields. This problem is
avoided in the present paper by choosing a special class of number fields: Let l be a fixed
rational prime and

Sl := {m ∈ N \ {1} |m is l–power–free}.
For m ∈ Sl, define the pure number field km := Q( l

√
m) where the radical is choosen in

R
+. Let r(m) := ress=1 ζkm(s) where ζkm is the Dedekind zeta function of km. Then

r(m) =
hkmRkm

d
1/2
km

c(l), c(l) =

{
2, l = 2,
(2π)(l−1)/2, l ≥ 3,

}
and dkm � K(m)l−1, where K(m) is the squarefree kernel of m. For m ∈ N \ Sl, define
r(m) := 0.

Theorem. There is a distribution function F ∈ C∞(R) such that for all z ∈ R,

lim
x→∞

#{m ∈ Sl |m ≤ x, r(m) ≤ ez}
#{m ∈ Sl |m ≤ x}

= F (z).

Furthermore,

lim
x→∞

1

#{m ∈ Sl |m ≤ x}
∑

m∈Sl:m≤x

r(m)q =

∫
R+

zq dF (log z)

for all q ∈ N. The characteristic function Ψ(t) of F is an Euler product whose factors
depend on t ∈ R.

The idea of proof is as follows: For q ≥ 1, the function r is approximated in the q–th
mean by functions RP , P ∈ N, such that

‖r −RP‖q → 0 as P →∞.
Here

‖f‖q :=
(

lim sup
x→∞

1

x

∑
m≤x

|f(m)|q
)1/q

∈ [0,∞]

for f : N→ C. This step relies heavily on a zero density estimate of Kawada [10]. The RP

are partial products of Euler products derived from ζkm . They are almost periodic which
follows from the relation between the splitting of rational primes p in km and the splitting
of X l −m in F[X] and Qunram

p [X]. Here Qunram
p is the maximal unramified extension of

Qp.
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Since almost periodic functions have limit distributions, a standard argument shows
the same for r. In fact the procedure in this last step is somewhat different since we also
want to show the smoothness of F .
c1, c2, . . . will denote positive constants depending on the parameters given in paren-

theses. By ε we denote an arbitrary positive real.

2. Splitting of rational primes in km

The material in this section belongs to concrete algebraic number theory and is not
new. For the convenience of the reader the relevant results are given in modern language
and proofs are scetched.

For two polynomials f, g denote the discriminant of f by discr(f) and the resultant of
f and g by R(f, g).

Proposition 2.1. Let o be a complete discrete valuation ring with characteristic 0 and
maximal ideal p = πo. Assume that the monic separable polynomial f ∈ o[X] has the
prime decomposition f = f1 · · · fr in o[X]. Let a ∈ N0 with πa‖ discr(f) and for 1 ≤ i <
j ≤ r, let ρij ∈ N0 with πρij‖R(fi, fj). Then ρ′ :=

∑
i<j ρij ≤ a/2. For all monic g ∈ o[X]

with deg g = deg f and g ≡ f mod πa+1, there is a prime decomposition g = g1 · · · gr with

deg gi = deg fi, gi ≡ fi mod πa+1−ρ′ , 1 ≤ i ≤ r.

Proof. This proposition rests on a generalization of Hensel’s lemma and its essence is
contained in [16]. For the formulation in terms of valuation rings, see [2]. �

For a rational prime p let Qp be the field of p–adic numbers and Qp an algebraic closure
of Qp.

Proposition 2.2. Let α ∈ C be a zero of the monic irreducible polynomial f ∈ Q[X] and
define K := Q(α). Let pOK = pe11 · · · perr be the prime ideal decomposition of the rational
prime p in K. For 1 ≤ i ≤ r, let di be the residue class degree of pi. Set ni := eidi
and let ξi ∈ Qp be a (pni − 1)–st primitive root of unity. There is a prime decomposition
f = f1 · · · fr in Qp[X], where the fi are monic of degree ni and different from each other.
Each fi has a prime decomposition fi = gi1 · · · gidi in Qp(ξi)[X], where each gij is monic
of degree ei.

Proof. Let f = f1 · · · fr′ be a prime decomposition in Qp[X] with monic factors. Since

f is separable, all the fi are different. Let αi ∈ Qp be a zero of fi for 1 ≤ i ≤ r′. Let

vp be the p–adic valuation on Qp. It is well known (see, e.g., Neukirch [15], Chapter II,
Theorem 8.2) that r′ = r and the enumeration can be choosen such that for 1 ≤ i ≤ r
there is a homomorphism τi : K → Qp with τi(α) = αi and vp ◦ τi is the continuation of
vp to K that belongs to pi. Thus Qp(αi) is isomorphic to a completion of K with respect
to vp ◦ τi, and

deg fi = [Qp(αi) : Qp] = eidi = ni.

If d ∈ N and ξ ∈ Qp is a (pd − 1)–st primitive root of unity then Qp(ξ) is the uniquely

determined unramified extension of Qp in Qp of degree d (see, e.g., [11], Chapter III,

Section 3). Let ξ′i ∈ Qp be a primitive (pdi − 1)–st root of unity. Then Qp(ξ
′
i) ⊆ Qp(αi).

Thus Qp(αi)/Qp(ξ
′
i) is completely ramified of degree ei. Since di|ni, we have pdi−1|pni−1
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and thus Qp(ξ
′
i) ⊆ Qp(αi) ∩ Qp(ξi) =: L. Since L/Qp(ξ

′
i) is unramified and completely

ramified, we have Qp(ξ
′
i) = L = Qp(αi) ∩Qp(ξi). Since Qp(ξi)/Qp is finite and galois the

Translation Theorem gives

[Qp(ξi, αi) : Qp(ξi)] = [Qp(αi) : Qp(ξ
′
i)] = ei.

Let fi = gi1 · · · gid be the decomosition of fi in Qp(ξi) into monic irreducible polynomials.
We can assume gi1(αi) = 0. Then gi1 is the minimal polynomial of αi over Qp(ξi) and

thus deg gi1 = ei. Let 1 ≤ j ≤ d and β ∈ Qp a zero of gij. Then fi(β) = 0 and thus αi
and β are conjugate of Qp. Let σ be a Qp–automorphism of Qp with σ(αi) = β. If gσi1 is
the image of gi1 under σ, we have gσi1(β) = σ(gi1(αi)) = 0. Since Qp(ξi)/Qp is normal, we
have gσi1 ∈ Qp(ξi)[X] and thus gσi1 is the minimal polynomial of β over Qp(ξi). Therefore
gij = gσi1 and in particular deg gij = deg gi1 = ei. Since this holds for all 1 ≤ j ≤ d, we
finally have d · ei = ni, e.g. d = di. �

Proposition 2.3. Let f ∈ Z[X] be monic and irreducible and α ∈ C a zero of f . Define
K := Q(α) and let pOK = pe11 · · · perr be the prime ideal decomposition of the rational
prime p in K. For 1 ≤ i ≤ r let di be the residue class degree of pi. Let a ∈ N0

with pa‖ discr(f). Then for every monic irreducible g ∈ Z[X] with deg g = deg f and
g ≡ f mod pa+1 the following holds: If β ∈ C is a zero of g and K ′ := Q(β), then the
prime ideal decomposition of p in K ′ is of the form

pOK′ = qe11 · · · qerr ,

and for 1 ≤ i ≤ r the residue class degree of qi is di.

Proof. We combine Propositions 2.1 and 2.2 several times. Let pOK′ = q
e′1
1 · · · q

e′s
s be the

prime ideal decomposition of p in K ′ and d′j the residue class degree of qj. Let ξi ∈ Qp

be a primitive (pni − 1)–st root of unity where ni := eidi. By Proposition 2.2 we have
a prime decomposition f = f1 · · · fr in Qp[X] where fi is monic of degree ni. Gauß’
Lemma gives f1, . . . , fr ∈ Zp[X]. Let ρij ∈ N0 with pρij‖R(fi, fj) and ρ′ :=

∑
i<j ρij.

From Proposition 2.1 it follows that there is a prime decomposition g = g1 · · · gr in Zp[X]
with deg gi = deg fi and gi ≡ fi mod pa

′
for 1 ≤ i ≤ r, where a′ := a + 1 − ρ′. By

Proposition 2.2 again it follows that s = r and, after some reordering, n′i := e′id
′
i = ni for

1 ≤ i ≤ r. A well known theorem gives

discr(f) =
r∏
i=1

discr(fi)
∏
i6=j

R(fi, fj)

and thus a =
∑r

i=1 ordp discr(fi) + 2ρ′. Therefore a′ > ordp discr(fi) for 1 ≤ i ≤ r. Fix
1 ≤ i ≤ r and let oi be the valuation ring of Ki := Qp(ξi). Since Ki/Qp is unramified,
the maximal ideal of oi is poi. By Proposition 2.2 there is a prime decomposition fi =
fi1 · · · fidi in Ki[X] where each fij is monic of degree ei. Gauß’ Lemma shows that fij ∈
oi[X] for 1 ≤ j ≤ di. Since gi ≡ fi mod pordp discr(fi)+1 and deg gi = deg fi, Proposition 2.1
gives a prime decomposition gi = gi1 · · · gidi in oi[X] with deg gij = deg fij = ei for 1 ≤ i ≤
di. A final application of Proposition 2.2 gives e′i = ei and d′i = n′i/e

′
i = ni/ei = di. �



5

Proposition 2.4. Let l be a rational prime and m ∈ Sl. Then [km : Q] = l and for all
rational primes p 6= l, we have

#
{
p|p
∣∣ p is a prime ideal in km with residue class degree 1

}
= #{x mod p |xl ≡ m mod p}. (2.1)

Proof. Let p be a rational prime with p|m. Let a ∈ N with pa‖m. Since m is l–power–free,
we have l 6 |a and there are x, y ∈ Z with ax+ ly = 1, x > 0. Define m′ := (mp−a)xp ∈ N.
Then m′ = mxpyl, m = (m′)a(mp−a)yl and thus km = km′ .

Since m 6= 1 there is a rational prime p as above. Since p‖m′, the polynomial X l−m′ ∈
Z[X] is Eisensteinian with respect to p and thus irreducible. Therefore [km : Q] = [km′ :
Q] = l.

Now let p 6= l be an arbitrary rational prime. If p|m, Proposition 4.18 of [14] is
applicable and gives pOkm = pOkm′ = pl with some prime ideal p of km with residue
class degree 1. Thus the left hand side of (2.1) equals 1. The same holds for the right

hand side since p|m. Now assume p 6 |m. The absolute discriminant of the elements l
√
m
j
,

0 ≤ j ≤ l − 1, is d = llml−1 and therefore p 6 | d. For the index t := [Okm : Z[ l
√
m]],

we have d = t2dkm/Q where dkm/Q is the absolute discriminant of km. Thus p 6 | t and
Theorem 4.12 of [14] is applicable. Let X l −m ≡ f1 · · · fr mod p with monic irreducible
polynomials f1, . . . , fr mod p. Since p 6 |d, the fi are different from each other. Therefore
pOkm = p1 · · · pr with different prime ideals pi of km; each pi has residue class degree
deg fi. Thus the left hand side of (2.1) equals #{1 ≤ i ≤ r | deg fi = 1} which is the
number of zeros of X l −m mod p. �

3. Some auxiliary functions

Let p be a rational prime. For m ∈ Sl define

χ(m, p) := #
{
p|p
∣∣ p is a prime ideal of km with f(p/p) = 1

}
− 1,

γp1(m) :=
(

1− 1

p

)−χ(m,p)

, γp2(m) :=
∏

p|p: f(p/p)≥2

(
1− 1

pf(p/p)

)−1

,

γp(m) := γp1(m)γp2(m),

where f(p/p) := [Okm/p : Z/pZ] is the residue class degree of p. For m ∈ N \ Sl,
define γp1(m) := γp2(m) := γp(m) := 0. For b ∈ N0, let Rpb be a complete system of
representatives of the coprime residue classes modulo pb(l−2)+l+1. From Dirichlet’s prime
number theorem it follows that we can assume Rpb ⊆ Sl.

Lemma 3.1. For p a rational prime, 0 ≤ b ≤ l − 1, m ∈ Rpb and m′ ∈ Sl with
m′ ≡ pbm mod pb(l−1)+l+1, we have γpi(m

′) = γpi(p
bm) for i = 1, 2.

Proof. For m′′ := pbm ∈ Sl, the absolute discriminant of X l − m′′ is d = ll(m′′)l−1 and
hence pb(l−1)+δp‖d, where δp = l for p = l and δp = 0 otherwise. Since m′ ≡ m′′ mod
pb(l−1)+δp+1, Proposition 2.3 shows that the invariants connected with the decomposition
of p in km′ and km′′ are the same after some reordering. Therefore γpi(m

′) = γpi(m
′′). �
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Lemma 3.2. The density of Sl is

d(Sl) := lim
x→∞

1

x
#{m ∈ Sl |m ≤ x} = ζ(l)−1.

For a, q ∈ N coprime, we have

lim
x→∞

1

x
#{m ∈ Sl |m ≤ x, m ≡ a mod q} =

1

q

∏
p|q

(
1− 1

pl

)−1

d(Sl).

Proof. Let χ be a Dirichlet character modulo q. For x > 0, define

Sχ(x) :=
∑

m∈Sl:m≤x

χ(m).

Then

Tχ(x) :=
∑
d≤ l
√
x

χ(dl)Sχ

( x
dl

)
=
∑
n≤x

χ(n) =

{
ϕ(q)x/q +O(q), χ = χ0,
O(q), χ 6= χ0.

}
Möbius inversion gives

Sχ(x) =
∑
d≤ l
√
x

µ(d)χ(dl)Tχ

( x
dl

)
=


ϕ(q)

q

∏
p6 | q

(
1− 1

pl

)
x+O(q l

√
x), χ = χ0,

O(q l
√
x), χ 6= χ0.


Now the orthogonality relation for characters gives

#{m ∈ Sl |m ≤ x, m ≡ a mod q} =
1

ϕ(q)

∑
χ mod q

Sχ(x)χ(a) =
1

q

∏
p6 | q

(
1− 1

pl

)
x+O(q l

√
x).

�

For P ≥ 2, define the function

RP (m) :=
∏
p≤P

γp(m), m ∈ N.

For x ≥ 1, define Sl(x) := #{m ∈ Sl |m ≤ x}. Furthermore, define the distribution
function

FP,x(z) :=
1

Sl(x)
#{m ∈ Sl |m ≤ x, RP (m) ≤ ez}, z ∈ R.

Let ΨP,x be the characteristic function of FP,x. For p a rational prime and t ∈ R, define

ψ(p, t) :=
(

1− 1

pl

)−1 ∑
0≤b≤l−1

1

pb(l−1)+l+1

∑
m∈Rpb

γp(p
bm)it.

Finally, set

ΨP (t) :=
∏
p≤P

ψ(p, t).

Lemma 3.3. For all P ≥ 2, we have limx→∞ΨP,x(t) = ΨP (t) uniformly in t ∈ R.
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Proof. For t ∈ R, we have

ΨP,x(t) =

∫
R

eitzdFP,x(z) =
1

Sl(x)

∑
m∈Sl:m≤x

RP (m)it

=
1

Sl(x)

∑
0≤bp≤l−1 (p≤P )

∑
m∈Sl:m≤x, ordpm=bp (p≤P )

RP (m)it. (3.1)

The inner sum equals∑
mp∈Rpbp (p≤P )

∑
m∈Sl:m≤x,m≡pbpmp mod pbp(l−1)+l+1 (p≤P )

RP (m)it. (3.2)

Fix mp for p ≤ P . It follows from Lemmas 3.1 and 3.2 that the inner sum in (3.2) equals∏
p≤P

γp(p
bpmp)

it #
{
m′ ∈ Sl

∣∣∣m′ ≤ x
∏
p≤P

p−bp , m′ ≡ a mod q
}

∼
∏
p≤P

γp(p
bpmp)

it 1

q

∏
p|q

(
1− 1

pl

)−1

d(Sl)
x∏

p≤P p
bp
, (3.3)

where q :=
∏

p≤P p
bp(l−2)+l+1 and a ∈ N with gcd(a, q) = 1 depends on the bp and mp.

Putting (3.1), (3.2) and (3.3) together we see that for fixed P ≥ 2, we have

ΨP,x(t) =
1

Sl(x)

∑
0≤bp≤l−1 (p≤P )

∑
mp∈Rpbp (p≤P )∏

p≤P

γp(p
bpmp)

it
∏
p≤P

p−bp(l−1)−l−1
(

1− 1

pl

)−1

d(Sl)x+ o(1)

=ΨP (t) + o(1)

as x→∞ uniformly in t ∈ R. �

Lemma 3.4. Let c > 0. For all n ∈ N and a1, . . . , an ∈ [−c, c] with
∑n

j=1 aj = 0, we have

1

n

∣∣∣ n∑
j=1

eiaj
∣∣∣ ≤ exp

(
− 1

2n

n∑
j=1

a2
j +Oc

( 1

n

n∑
j=1

|aj|3
))
.

Proof. The power series expansion of the exponential function gives

1

n

∣∣∣ n∑
j=1

eiaj
∣∣∣ =

1

n

∣∣∣ n∑
j=1

(
1 + iaj +

(iaj)
2

2
+Oc(|aj|3)

)∣∣∣
=
∣∣∣1− 1

2n

n∑
j=1

a2
j +Oc

( 1

n

n∑
j=1

|aj|3
)∣∣∣.

Together with Hölder’s inequality it follows that

1

n

∣∣∣ n∑
j=1

eiaj
∣∣∣ exp

( 1

2n

n∑
j=1

a2
j

)
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=
∣∣∣1− 1

2n

n∑
j=1

a2
j +Oc

( 1

n

n∑
j=1

|aj|3
)∣∣∣ · ∣∣∣1 +

1

2n

n∑
j=1

a2
j +Oc

(( 1

n

n∑
j=1

a2
j

)2)∣∣∣
≤ 1 +Oc

(( 1

n

n∑
j=1

a2
j

)2

+
1

n

n∑
j=1

|aj|3
)
≤ 1 +Oc

( 1

n

n∑
j=1

|aj|3
)

≤ exp
(
Oc

( 1

n

n∑
j=1

|aj|3
))
.

�

Lemma 3.5. (1) There is some c ≥ 1 such that for all |t| ≥ c, p ≥ c(|t| + 1),
p ≡ 1 mod l, we have

|ψ(p, t)| ≤ exp
(
− l − 1

4p2
t2
)
.

(2) For all c′ ≥ 1, |t| ≤ c′, p 6= l a rational prime, we have

ψ(p, t) = 1 +Oc′

( 1

p2

)
.

Proof. Let p 6= l be a rational prime, c′′ ≥ 1 and |t| ≤ c′′p. Then

ψ(p, t)
(

1− 1

pl

)
=

1

pl+1

∑
m∈Rp0

γp(m)it +
1

p2l

∑
m∈Rp1

γp(pm)it

+O
( ∑

2≤b≤l−1

1

pb(l−1)+l+1
pb(l−2)+l+1

)
.

The error term is O(p−2). For m ∈ Sl, we have

γp2(m)it = exp
(
− it

∑
p|p: f(p/p)≥2

log
(

1− 1

pf(p/p)

))
= exp

( ∑
p|p: f(p/p)≥2

O
( |t|
p2

))
= exp

(
O
( |t|
p2

))
= 1 +Oc′′

( |t|
p2

)
.

Thus

ψ(p, t)
(

1− 1

pl

)
=

1

pl+1

∑
m∈Rp0

(
1− 1

p

)−χ(m,p)it

+
1

p2l

∑
m∈Rp1

(
1− 1

p

)−χ(pm,p)it

+Oc′′

( |t|+ 1

p2

)
.

Since p 6= l, Proposition 2.4 gives χ(m, p) = ρ(m, p) for m ∈ Sl, where

ρ(m, p) := #{x mod p |xl ≡ m mod p} − 1, m ∈ Z.
The function ρ(·, p) is p–periodic and∑

m mod p

ρ(m, p) = 0. (3.4)
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Thus

ψ(p, t) =
1

pl+1

∑
m mod p: p6 |m

(
1− 1

p

)−ρ(m,p)it

pl

+
1

p2l

(
1− 1

p

)−ρ(0,p)it

p2l−2(p− 1) +Oc′′

( |t|+ 1

p2

)
+

1

pl
ψ(p, t)

=
1

p

∑
m mod p

(
1− 1

p

)−ρ(m,p)it

+Oc′′

( |t|+ 1

p2

)
. (3.5)

(1) Let c ≥ 1 and assume |t| ≥ c, p ≥ c(|t|+1), p ≡ 1 mod l. The following O–constants
do not depend on c. By Lemma 3.4 it follows from (3.5) and (3.4) that

|ψ(p, t)| ≤
∣∣∣1
p

∑
m mod p

e−itρ(m,p) log(1−1/p)
∣∣∣+O

( |t|
p2

)
≤ exp

(
− 1

2p

∑
m mod p

t2ρ(m, p)2 log2
(

1− 1

p

)
+O

(1

p

∑
m mod p

|t|3ρ(m, p)3
∣∣∣ log

(
1− 1

p

)∣∣∣3))+O
( |t|
p2

)
since ∣∣∣− itρ(m, p) log

(
1− 1

p

)∣∣∣ ≤ |t|(l + 1)
1

p− 1
≤ l + 1.

From l|p − 1 it follows that F∗p has a cyclic subgroup of order l. Thus the kernel of the

homomorphism F
∗
p → F

∗
p, x 7→ xl, has order l. Therefore ρ(0, p) = 0, ρ(m, p) = l − 1 for

(p− 1)/l elements of F∗p and ρ(m, p) = −1 for the rest of them. This gives∑
m mod p

ρ(m, p)2 = (p− 1)(l − 1)

and therefore

|ψ(p, t)| ≤ exp
(
− l − 1

2p2
t2 +O

( |t|3
p3

))
+O

( |t|
p2

)
.

For x, y ∈ R, |x|, |y| ≤ c4, we have exp(x) + y ≤ exp(x+ y +Oc4(x2)). This gives

|ψ(p, t)| ≤ exp
(
− l − 1

2p2
t2 +O

( |t|3
p3

)
+O

( |t|
p2

)
+O

( |t|4
p4

))
= exp

(
− l − 1

2p2
t2 +O

( t2
p2c

))
.

Choosing c ≥ 1 large enough gives |ψ(p, t)| ≤ exp(−(l − 1)t2/(4p2)).
(2) Now let c′ ≥ 1 be arbitrary, |t| ≤ c′ and p 6= l. Since∣∣∣− itρ(m, p) log

(
1− 1

p

)∣∣∣ ≤ |t|(l + 1)
1

p− 1
≤ c′(l + 1),
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Taylor expansion in (3.5) together with (3.4) gives

ψ(p, t) =
1

p

∑
m mod p

(
1− itρ(m, p) log

(
1− 1

p

)
+Oc′

( |t|2
p2

))
+Oc′

( 1

p2

)
= 1 +Oc′

( 1

p2

)
.

�

Lemma 3.6. (1) The infinite product Ψ(t) :=
∏

p ψ(p, t) converges uniformly for t in

any bounded subset of R. As |t| → ∞, we have

Ψ(t)� exp
(
− c5|t|

log(|t|+ 2)

)
with some constant c5 > 0.

(2) There are distribution functions FP , P ≥ 2, and F with the properties:
• The characteristic function of FP is ΨP .
• The characteristic function of F is Ψ.
• The sequence (FP,x)x≥1 converges weakly to FP .
• The sequence (FP )P≥2 converges weakly to F .
• F is infinitely differentiable and all its derivatives are bounded.

Proof. (1) The uniform convergence of Ψ(t) on bounded sets follows from Lemma 3.5(2).
The prime number theorem in arithmetic progressions gives∑

p>x: p≡1 mod p

1

p2
≥ c6

x log x

as x→∞. From the definition it follows immediately that |ψ(p, t)| ≤ 1 for all p, t. Now
Lemma 3.5(1) gives for |t| ≥ c

|Ψ(t)| ≤
∏

p≥c(|t|+1): p≡1 mod l

exp
(
− l − 1

4p2
t2
)

= exp
(
− t2(l − 1)

4

∑
p≥c(|t|+1): p≡1 mod l

1

p2

)
≤ exp

(
− c6(l − 1)t2

4c(|t|+ 1) log(c(|t|+ 1))

)
.

(2) From Lemma 3.3 and Kolmogorov’s Continuity Theorem (see, e.g., [7], Lemma 1.11)
it follows that ΨP is the characteristic function of a distribution function FP which is the
weak limit of the sequence (FP,x)x≥1. From part (1) it follows that limP→∞ΨP (t) =
Ψ(t) uniformly for bounded t. The same argument as above now shows that Ψ is the
characteristic function of a distribution function F such that limP→∞ FP = F weakly.
The Fourier Inversion Theorem (see, e.g., [7], Lemma 1.10) and the fast decay of Ψ show
that

F (z2)− F (z1) =

∫ ∞
−∞

e−itz2 − e−itz1
it

Ψ(t) dt (3.6)
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for z1, z2 ∈ R at which F is continuous. In particular,

|F (z2)− F (z1)| ≤
∫ ∞
−∞

∣∣∣e−itz2 − e−itz1
it(z2 − z1)

∣∣∣|Ψ(t)| dt · |z2 − z1| � |z2 − z1|

for these z1, z2. This shows that F is continuous everywhere and (3.6) holds for all z1, z2.
The theorem on differentiation of parameter integrals now shows that F ∈ C∞(R) and
all its derivatives are bounded. �

4. Almost periodicity of the function r

Let D be the C–linear space of periodic arithmetical functions and, for q ≥ 1, let Dq be
the closure of D with respect to ‖ · ‖q in the space of all functions with finite q–seminorm.
Then Dq is a Banach space (see [18], Chapter VI, Theorem 1.4).

For <s > 1 and m ∈ Sl, we have

ζkm(s)ζ(s)−1 = r1(m, s) r2(m, s) r3(m, s),

where

r1(m, s) :=
∏
p

∏
p|p: f(p/p)≥2

(
1− 1

pf(p/p)s

)−1

, r2(m, s) :=
(

1− 1

ls

)−χ(m,p)

,

r3(m, s) :=
∏
p6=l

(
1− 1

ps

)−χ(m,p)

.

Thus r = r1 r2 r3, where

r1 =
∏
p

γp2, r2 = γl1, r3(m) =

{
r3(m, 1), m ∈ Sl,
0, m ∈ N \ Sl.

}
Lemma 4.1. (1) For every ε > 0, the product r1(m, s) converges uniformly with re-

spect to m ∈ Sl, <s ≥ 1/2 + ε.
(2) For m ∈ Sl, the function r1(m, ·) is holomorphic and zero–free on <s > 1/2; it is

bounded on every half–plane <s ≥ 1/2 + ε where ε > 0.
(3) For every q ≥ 1, we have r1, r2 ∈ Dq.

Proof. (1) follows easily from the condition f(p/p) ≥ 2 in the product. (2) follows from
this and the fact that the factors have no zeros in <s > 1/2.

(3) First we show that for p a rational prime and q ≥ 1, we have γp1, γp2 ∈ Dq.
From Lemma 3.1 it follows that for m′,m′′ ∈ Sl with m′ ≡ m′′ mod p(l−1)2+l+l, we have
γpi(m

′) = γpi(m
′′), i = 1, 2. For a set X ⊆ N, denote its indicator function by IX . We

see that there are p(l−1)2+l+1–periodic functions γ̃pi with γpi = γ̃piISl . Since ISl ∈ Dq (see
[18], Chapter VII, Theorem 4.1), we have γpi ∈ Dq. In particular, r2 = γl1 ∈ Dq.

Now let q ≥ 1 and ε > 0. From (1) it follows that there is some P ≥ 2 such that
|r1(m)−

∏
p≤P γp2(m)| ≤ ε for all m ∈ Sl. Trivially this also holds for m ∈ N \ Sl. From

the above we know that γp2 ∈ Dqπ(P ) for all p ≤ P where π(P ) is the number of primes
≤ P . Thus

∏
p≤P γp2 ∈ Dq. So r1 is the uniform limit of functions in Dq and therefore

r1 ∈ Dq. �

Lemma 4.2. (1) For m ∈ Sl, the function r3(m, ·) is holomorphic on <s > 1/2.
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(2) There is some 0 < ρ < 1 such that for all sufficiently small ε > 0, there are
constants c(ε) > 0 and 1/2 < σ2(ε) < 1 with the property: For all x ≥ 1 and all
m ∈ Sl, m ≤ x, with the exception of O(x1−ρ) many, we have

r3(m, s)�ε exp(c(ε)(log x)ε)

for <s = σ2(ε), |=s| ≤ (log x)2/4, and

r3(m, s)� (dkm/Q(|=s|+ 1))c8

for <s = σ2(ε).

Proof. Since ζkm(s)ζ(s)−1 is entire (see [22] or [23]), part (1) follows from Lemma 4.1(2).
Part (2) is proved in the usual way. Let 1/2 < σ0 < σ1 < 1 be fixed and m ∈ Sl, m ≤ x,

such that ζkm(s)ζ(s)−1 has no zeros in σ0 ≤ <s ≤ 1, |=s| ≤ log2 x. For <s = 3/2, we have

|ζkm(s)| ≤ ζ
(3

2

)l
� 1, |ζ(s)−1| ≤

∏
p

(
1 +

1

p3/2

)
� 1.

The functional equation shows that

|ζkm(1− s)| � (dkm/Q(|=s|+ 1))c6 , |ζ(1− s)−1| � (|=s|+ 1)c6

with some constant c6 > 0. Furthermore, ζkm grows polynomially in the strip −1 ≤
<s ≤ 3/2. The same holds for ζ(s)−1 if s is not too close to the zeros of ζ(s) (see [5],
Chapter 17). Thus the Phragmén-Lindelöf Principle shows that

|r3(m, s)| � (dkm/Q(|=s|+ 1))2c6

for σ0 ≤ <s ≤ 3/2.
On <s > 1, the function

log r3(m, s) :=
∑
p6=l

∑
k≥1

(−1)k

k pks
χ(m, p)

is a logarithm of r3(m, s). Because of the assumption, it can be extended to the region
σ0 ≤ <s ≤ 1, |=s| ≤ log2 x. Furthermore,

| log r3(m, s)| � 1 +
∑
p

1

p<s

for <s > 1. The Borel-Caratheodory theorem now gives

| log r3(m, s)| � log dkm/Q + log log x� log x

for σ1 ≤ <s ≤ 3/2, |=s| ≤ (log x)2/2, since dkm/Q|llml−1. From this it follows by
Hadamard’s Three Circles Theorem that

| log r3(m, s)| �ε (log x)ε

for x�ε 1, <s = 1− ε(1− σ1)/3, |=s| ≤ (log x)2/4.
It remains to show that the number

A(σ0, x) := #
{
m ∈ Sl

∣∣m ≤ x, ζkm(s)ζ(s)−1 has a zero in σ0 ≤ <s ≤ 1, |=s| ≤ log2 x
}
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is negligible if σ0 is choosen appropriately. By Kawada’s density theorem [10], we see that∑
m∈Sl:N<m≤2N

N(m; 1− η, T )� (NT )1−η, 1 ≤ T ≤ N,

where η = 1/(2000l2) and N(m; 1−η, T ) is the number of zeros of ζkm(s)ζ(s)−1 in 1−η ≤
<s ≤ 1, |=s| ≤ T . Now put N = 2i, T = log2 x, and sum over 2 log log x/ log 2 < i ≤
log x/ log 2. This gives

A(1− η, x)� 2[2 log log x/ log 2]+1 +
∑

0≤i≤log x/ log 2

(2i log2 x)1−η � (x log2 x)1−η.

Choosing 0 < ρ < η, σ0 = 1 − η, σ0 < σ1 < 1 and σ2(ε) = 1 − ε(1 − σ1)/3 finishes the
proof. �

The following lemma ist the main analytic tool to approximate r by periodic functions.
For m ∈ Sl, let χ̃(m, ·) : N→ C be multiplicative with

χ̃(m, pa) :=

{
(−1)a

(−χ(m,p)
a

)
, p 6= l,

0, p = l.

}
Lemma 4.3. For every α > 0, there is a constant c9(α) > 0 with the property: For x ≥ 1,
N := xα, and all m ∈ Sl, m ≤ x, with the exception of O(x1−ρ) many, we have

r3(m) =
∑
n≥1

χ̃(m,n)

n
e−n/N +O(x−c9(α)).

Proof. For m ∈ Sl, p a rational prime and a ≥ 1,

|χ̃(m, pa)| ≤ (l − 1)l(l + 1) · · · (l + a− 2)

a!
=

(
l + a− 2

a

)
=

(l + a− 2) · · · (a+ 1)

(l − 2)!

=
( a

l − 2
+ 1
)( a

l − 3
+ 1
)
· · ·
(a

1
+ 1
)
≤ (a+ 1)l−2 = d(pa)l−2.

Thus for n ∈ N, we have

|χ̃(m,n)| ≤ d(n)l−2. (4.1)

Now the Binomial series shows that for <s > 1, we have

r3(m, s) =
∑
n≥1

χ̃(m,n)

ns
, (4.2)

where the Dirichlet series is absolutely convergent.
Choose ε > 0 so small that Lemma 4.2 can be applied. Let x ≥ 1, N := xα, and

m ∈ Sl, m ≤ x, a non–exceptional number. Since r3(m, ·) grows polynomially in the strip
σ2(ε) ≤ <s ≤ 2, the residue theorem gives

r3(m) = r3(m, 1) =
1

2πi

∫ 2+i∞

2−i∞
r3(m, s) Γ(s− 1)N s−1ds

−
∫ σ2(ε)+i∞

σ2(ε)−i∞
r3(m, s) Γ(s− 1)N s−1ds. (4.3)
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Since
1

2πi

∫ β+i∞

β−i∞
Γ(s) y−sds = e−y, β, y > 0,

plugging (4.2) in the first term of (4.3) gives the value∑
n≥1

χ̃(m,n)

n
e−n/N .

Furthermore,
Γ(s− 1)� (|=s|+ 1)c7e−π|=s|/2, <s = σ2(ε),

with some constant c7 > 0. Therefore Lemma 4.2 gives for the second term in (4.3) the
estimate ∫

|t|≤(log x)2/4

ec(ε)(log x)ε(|t|+ 1)c7e−π|t|/2Nσ2(ε)−1dt

+

∫
|t|≥(log x)2/4

(xl−1(|t|+ 1))c8(|t|+ 1)c7e−π|t|/2Nσ2(ε)−1dt

� Nσ2(ε)−1
(
ec(ε)(log x)ε + x(l−1)c8e−(π/2−ε)(log x)2/4

)
� x−c9(α)

with some constant c9(α) > 0. �

Lemma 4.4. For all m ∈ Sl, we have r3(m)� (logm)l−1.

Proof. From [14], Corollary 4 to Theorem 7.1, it follows that

r(m)� (log dkm/Q)l−1 � (logm)l−1.

Since r1(m), r2(m)� 1, the statement follows. �

Proposition 4.5. For all q ≥ 1, we have r3 ∈ Dq. For q ≥ 1, we have ‖r3‖qq �
exp(c12 q log log(q + 2)).

Proof. Let q ∈ N and α > 0 be fixed. From Lemmas 4.3 and 4.4 and (4.1) it follows that
for L ≥ 1, x ≥ L1/α and N := xα, we have∑

m∈Sl:m≤x

∣∣∣r3(m)−
∑

1≤n≤L

χ̃(m,n)

n

∣∣∣2q
�q x

1−ρ
(

(log x)2q(l−1) +
( ∑

1≤n≤L

d(n)l−2

n

)2q)
+

∑
m∈Sl:m≤x not an exception

(∣∣∣ ∑
1≤n≤L

χ̃(m,n)

n
(e−n/N − 1)

∣∣∣2q
+
∣∣∣∑
n>L

χ̃(m,n)

n
e−n/N

∣∣∣2q + x−2qc9(α)
)
.

Since x ≥ L1/α, the first sum on the right hand side is

�
∑

1≤m≤x

( ∑
1≤n≤L

d(n)l−2

n
· n
xα

)2q

.
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Thus

lim sup
x→∞

1

x

∑
m∈Sl:m≤x

∣∣∣r3(m)−
∑

1≤n≤L

χ̃(m,n)

n

∣∣∣2q
�q lim sup

x→∞

1

x

∑
m∈Sl:m≤x

∣∣∣∑
n>L

χ̃(m,n)

n
e−n/x

α
∣∣∣2q. (4.4)

From Proposition 2.4 it follows that for all rational primes p 6= l, the function χ(·, p) is
p–periodic on Sl. Thus for all n ∈ N, the function χ̃(·, n) is n–periodic on Sl. Therefore
it can be extended to an n–periodic function on N — which is again denoted by χ̃(·, n)
— such that for all m ∈ N, the function χ̃(m, ·) is multiplicative. With this extension, we
have

S1 :=
∑

m∈Sl:m≤x

∣∣∣∑
n>L

χ̃(m,n)

n
e−n/N

∣∣∣2q ≤ ∑
1≤m≤x

∣∣∣ ∣∣∣2q
=

∑
n1,...n2q>L

1

n1 . . . n2q

e−(n1+···n2q)/N S2(n1, . . . , n2q),

where

S2(n1, . . . , n2q) :=
∑

1≤m≤x

χ̃(m,n1) · · · χ̃(m,n2q).

Now we must estimate S2. Assume first that there is a rational prime p with p‖n1 · · ·n2q.
By the Chinese Remainder Theorem,∑
m mod n1···n2q

χ̃(m,n1) · · · χ̃(m,n2q) =
∏

p̃a‖n1···n2q

( ∑
m mod p̃a

χ̃(m, p̃ordp̃ n1) · · · χ̃(m, p̃ordp̃ n2q)
)
,

where p̃ runs through rational primes. The factor for p̃ = p is∑
m mod p

χ̃(m, p) = 0;

for p 6= l this follows from Proposition 2.4, and for p = l it is trivial. Thus

|S2(n1, . . . , n2q)| ≤
∑

m mod n1···n2q

|χ̃(m,n1) · · · χ̃(m,n2q)| ≤ n1 · · ·n2q(d(n1) · · · d(n2q))
l−2.

If, on the other hand, p2|n1 · · ·n2q for all prime divisors p of n1 · · ·n2q, all we can say is
that

|S2(n1, · · · , n2q)| ≤ x (d(n1) · · · d(n2q))
l−2.

With this we get the estimate

S1 �ε,q

∑
n1,...,n2q>L:n1···n2q is squarefull

1

n1 · · ·n2q

x (n1 · · ·n2q)
ε

+
∑

n1,...,n2q>L:n1···n2q is not squarefull

1

n1 · · ·n2q

e−(n1+···n2q)/N (n1 · · ·n2q)
1+ε
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�ε,q x
∑

n>L2q :n is squarefull

d2q(n)

n1−ε +
(∑
n≥0

nεe−n/N
)2q

.

Since nε e−n/N ≤ N ε(n/N)ε e−n/N �ε N
ε e−n/(2N), the second term on the right hand side

is

� N2qε
(
1− e−1/(2N)

)−2q � N2q(1+ε).

Since ∑
n≥1 is squarefull

1

n1−2ε
=
∏
p

(
1 +

∑
i≥2

1

p(1−2ε)i

)
converges, we have

S1 � x s(L) + x2q(1+ε)α,

where s(L)→ 0 as L→∞. Thus it follows from (4.4) that∥∥∥r3 − ISl ·
∑

1≤n≤L

χ̃(·, n)

n

∥∥∥2q

2q
�q s(L)

if we choose 0 < α < 1/(2q(1 + ε)). Since ISl ∈ D2q and the sum above is periodic, we
have r3 ∈ D2q. This holds for all q ∈ N. Thus r3 ∈ Dq for all q ≥ 1.

In particular, for q ∈ N we have

‖r3‖2q
2q = lim

L→∞

∥∥∥ISl · ∑
1≤n≤L

χ̃(·, n)

n

∥∥∥2q

2q
.

Since |χ̃(m, pa)| ≤
(
l+a−2
a

)
, an argument as above gives∑

m∈Sl:m≤x

∣∣∣ ∑
1≤n≤L

χ̃(m,n)

n

∣∣∣2q ≤ ∑
1≤n1,...,n2q≤L

1

n1 · · ·n2q

S2(n1, . . . , n2q)

� x
∑

n≥1 squarefull

1

n

∑
n1···n2q=n

d̃(n1) · · · d̃(n2q) + C(L, q),

where d̃ is multiplicative with d̃(pa) =
(
l+a−2
a

)
, the �-constant is independent of q and

C(L, q) does not depend on x. Therefore,

‖r3‖2q
2q �

∑
n≥1 squarefull

1

n

∑
n1···n2q=n

d̃(n1) · · · d̃(n2q)

=
∏
p

(
1 +

∑
a≥2

1

pa

∑
a1,...,a2q≥0: a1+···a2q=a

2q∏
i=1

(
l + ai − 2

ai

))
. (4.5)

For |z| < 1, we have
∑

a≥0

(
l+a−2
a

)
za = (1− z)−(l−1) and thus

∑
a≥0

za
∑

a1,...,a2q≥0: a1+···+a2q=a

2q∏
i=1

(
l + ai − 2

ai

)
= (1− z)−K , K := 2q(l − 1).
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Denote the p–th factor in (4.5) by A(p). For p ≤ K, we have A(p) ≤ (1 − 1/p)−K and
thus

logA(p) ≤ K

p− 1
� K

p
.

For p > K, we have

A(p) =
(

1− 1

p

)−K
− K

p
=
(

1− 1

p2

)−K((
1 +

1

p

)K
− K

p

(
1− 1

p2

)K)
=
(

1− 1

p2

)−K(
1 +

K∑
κ=2

(
K

κ

)
1

pκ
− K

p

K∑
κ=1

(
K

κ

)(
− 1

p2

)κ)
and thus

logA(p) ≤ K

p2 − 1
+

K∑
κ=2

(
K

κ

)
1

pκ
− K

p

K∑
κ=1

(
K

κ

)(
− 1

p2

)κ
.

Since p > K, we have(
K

κ

)
1

pκ
≤ 1

κ!

(K
p

)κ
≤ 1

κ!

(K
p

)2

, 2 ≤ κ ≤ K,

and
K

p

(
K

κ

)
1

p2κ
≤ 1

κ!

(K
p

)κ+1

≤ 1

κ!

(K
p

)2

, 1 ≤ κ ≤ K.

Therefore logA(p)� K2/p2. Plugging these estimates in (4.5) gives

‖r3‖2q
2q � exp

(
c10

(∑
p≤K

K

p
+
∑
p>K

K2

p2

))
≤ exp(c11K log logK).

Since ‖r3‖t is non–decreasing in t ≥ 1, the second statement follows. �

Now we can prove part of the main theorem.

Theorem 4.6. For q ≥ 1, we have r ∈ Dq. The function r, restricted to Sl, has a limit
distribution. For q ≥ 1, the q–th moment of r on Sl exists and equals the q–th moment
of its limit distribution.

Proof. From Lemma 4.1(3) and Proposition 4.5 it follows that r = r1 r2 r3 ∈ Dq for all
q ≥ 1. In particular, the q–th moment of r on Sl

βq := lim
x→∞

1

Sl(x)

∑
m∈Sl:m≤x

r(m)q =
1

d(Sl)
‖r‖qq

exists. Since r1 and r2 are bounded, it follows from Proposition 4.5 that

βq � (sup r1 r2)q ‖r3‖qq � exp(c13 q log log(q + 2)),

and in particular the power series

Φ(z) := 1 +
∑
q≥1

βq
q!
zq
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has infinite radius of convergence. Since βq is the limit of the q–th moments of the
distribution functions Fx(log z), z ∈ R+, where

Fx(z) :=
1

Sl(x)
#
{
m ∈ Sl

∣∣m ≤ x, r(m) ≤ ez
}
, z ∈ R,

if follows from a theorem of Fréchet and Shohat (see, e.g., [7], Lemmas 1.43 and 1.44)
that the sequence (Fx(z))x≥1 converges weakly to a distribution function F ∗(z), and that

βq =

∫
R+

zq dF ∗(log z), q ∈ N.

It remains to show that F ∗ ∈ C∞(R) and to compute the Euler product representation
of Ψ(t).

�

5. Smoothness of the limit distribution

In the proof of Theorem 4.6, the function r was approximated by periodic functions.
This was useful to show almost periodicity and give estimates of the moments. Now r
will be approximated by RP which will be used to show that F = F ∗.

Proposition 5.1. We have limP→∞ ‖r −Rp‖2 = 0.

Proof. For L ≥ 1, define

s1(L) :=
∥∥∥r3 − ISl ·

∑
1≤n≤L

χ̃(·, n)

n

∥∥∥2

2
.

From the proof of Proposition 4.5 it follows that s1(L)→ 0 as L→∞. For P ≥ 2, define

s2(P ) := sup
m∈Sl

∣∣∣ ∏
p>P

γp2(m)− 1
∣∣∣.

From Lemma 4.1 it follows that s2(P )→ 0 as P →∞. Furthermore,

s3 := sup
m∈Sl, P≥2

∣∣∣r2(m)
∏
p≤P

γp2(m)
∣∣∣ <∞.

Since χ̃(·, n) is n–periodic, we have

s4(L) := sup
m∈Sl

∣∣∣ ∑
1≤n≤L

χ̃(m,n)

n

∣∣∣ <∞.
Thus for m ∈ Sl, P ≥ L ≥ l, we have∣∣∣r1(m) r2(m)

∑
1≤n≤L

χ̃(m,n)

n
−RP (m)

∣∣∣
=
∣∣∣r2(m)

∏
p≤P

γp2(m)
∣∣∣ · ∣∣∣(∏

p>P

γp2(m)− 1
) ∑

1≤n≤L

χ̃(m,n)

n
+
∑

1≤n≤L

χ̃(m,n)

n
−

∏
p≤P : p6=l

γp1(m)
∣∣∣

≤ s3

(
s2(P ) s4(L) +

∣∣∣ ∑
1≤n≤L

χ̃(m,n)

n
−

∏
p≤P : p6=l

γp1(m)
∣∣∣).
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Since r1 r2 is bounded, we get

‖r −RP‖2 ≤
∥∥∥r − ISlr1 r2

∑
1≤n≤L

χ̃(·, n)

n

∥∥∥
2

+
∥∥∥ISlr1 r2

∑
1≤n≤L

χ̃(·, n)

n
−RP

∥∥∥
2

� s1(L)1/2 + s2(P )s4(L) +
∥∥∥ISl ∑

1≤n≤L

χ̃(·, n)

n
− ISl

∏
p≤P : p6=l

γp1

∥∥∥
2
.

For M ≥ L, define aP,L,M(n) := −1 if M ≥ n > L and p ≤ P for all p|n. Define
aP,L,M(n) := 0 otherwise. Then for x ≥ 1,∑

m∈Sl:m≤x

∣∣∣ ∑
1≤n≤L

χ̃(m,n)

n
−

∏
p≤P : p6=l

γp1(m)
∣∣∣2

=
∑

m∈Sl:m≤x

∣∣∣∑
n≥1

χ̃(m,n)aP,L,M(n)

n
−

∑
n>M : p|n⇒p≤P

χ̃(m,n)

n

∣∣∣2
�
∑
m≤x

∣∣∣∑
n≥1

χ̃(m,n)aP,L,M(n)

n

∣∣∣2 + x
( ∑
n>M : p|n⇒p≤P

d(n)l−2

n

)2

.

Denote the second sum on the right hand side by s5(M,P ). Since∑
n≥1: p|n⇒p≤P

d(n)l−2

n
<∞,

it follows that s5(M,P )→ 0 as M →∞ for fixed P ≥ 2. Since aP,L,M(n) = 0 for n > M ,
an argument similar to that in the proof of Proposition 4.5 shows that∥∥∥ISl ∑

1≤n≤L

χ̃(·, n)

n
− ISl

∏
p≤P : p6=l

γp1

∥∥∥2

2

�
∑

n1,n2≥1:n1n2 squarefull

(d(n1) d(n2))l−2

n1 n2

∣∣aP,L,M(n1)aP,L,M(n2)
∣∣+ s5(M,P )2

�
∑

n≥L2 squarefull

1

n2/3
+ s5(M,P )2.

Thus for all M ≥ L, P ≥ L ≥ l, we have

‖r −RP‖2 � s1(L)1/2 + s2(P ) s4(L) +
∑

n≥L2 squarefull

1

n2/3
+ s5(M,P )2.

Letting M →∞ gives

‖r −RP‖2 � s1(L)1/2 + s2(P ) s4(L) +
∑

n≥L2 squarefull

1

n2/3

for P ≥ L ≥ l. Given ε > 0 there is an L ≥ l with
∑

n≥L2 squarefull n
−2/3 ≤ ε and

s1(L) ≤ ε2. Then there is a P0 ≥ L such that for P ≥ P0, we have s2(P ) s4(L) ≤ ε and
thus ‖r −RP‖2 � ε. �



20 MANFRED PETER

With Lemma 3.6 and Proposition 5.1 the following theorem can be proved as in [17],
end of section 5.

Theorem 5.2. On Sl, the function r has the limit distribution F .
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