THE DISTRIBUTION OF CLASS NUMBERS
OF PURE NUMBER FIELDS

MANFRED PETER

1. INTRODUCTION

Much is known about the statistical distribution of class numbers of binary quadratic
forms and quadratic fields. Let d = 0,1 mod 4 and d not a perfect square. Define h(d) as
the number of equivalence classes of primitive binary quadratic forms with discriminant
d (and positive definite in case d < 0). For d > 0, let eg := (ug + vqv/d)/2, where
(ug,vq) is the fundamental solution of Pell’s equation u? — dv? = 4. If d is a fundamental
discriminant then h(d) is also the class number of Q(v/d) in the narrow sense.

Gau$ [8] conjectured and Mertens [13] and Siegel [20] later proved that

™y T3/
> h(d)logeq ~ mx?’ > hd)~ 18C(3)x3 2,

0<d<z 0>d>—x

Chowla and Erdés [4] proved that there is a continuous distribution function F' such that
for all z € R,

, 1 h(d)log e ;
lim — #{0<d§x‘%§e }:F(z),

T—00 x/2

limi#{0>d2—x‘%§ez}zﬁ’(z).

z—00 I /2

Elliott [6] showed that F' € C*°(R) and it has the characteristic function
1 1 1 In—t 1 1 1y
o) =[I(C+500--)(1-2) +5(1-2)(1+-) 7). ter
Q 1;[ p 2 p p 2 p p

Barban [1] proved that for ¢ € N, the ¢ — th moment 3, of F(log z) exists and that

. 1 h(d)logeg\ e ndqn2
2 5 (Ml 5 othi)

0<d<z n>1

) 1 h(d)mye
Jm s D <|d\1/2) = P

0>d>—x

where ¢ is Euler’s totient function and dy(n) is the number of ways one can write n as
a product of ¢ positive integers. For all these results, error term estimates can be given
(see [3], [9], [19], [21], [24]).
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It seems that for number fields of higher degree, no analoguous results are known. The
Brauer-Siegel Theorem (see, e.g., [12], Chapter XVI) gives a rough idea of the size of the
class number times the regulator: Let k range over a sequence of number fields which are
galois over Q such that n/logd — 0, where n := [k : Q] is the degree and d = dy g is the
absolute discriminant of k. Let hy be the class number of k and Ry its regulator. Then

_—
log d*/2

When looking for more precise information on the value distribution of

hy Ry,

42
we run into the problem of how to effectively parametrize number fields. This problem is
avoided in the present paper by choosing a special class of number fields: Let [ be a fixed
rational prime and

Sy :={m e N\ {1} |m is [-power—free}.

For m € S, define the pure number field k,, := Q(¢/m) where the radical is choosen in
R*. Let r(m) := ress—1 (i, (s) where (j,, is the Dedekind zeta function of k,,. Then

 hy,, Ry, [ 2 =2,
T<m) - d]1€/2 C(l)7 C(l) - { (27T>(l_1)/2, l > 3’ }

and dy,, < K(m)'"™!, where K(m) is the squarefree kernel of m. For m € N\ S;, define
r(m) := 0.

Theorem. There is a distribution function F' € C*°(R) such that for all z € R,

#{m € S;|m <z, r(m) < e}

li = F(z).
b #{m € S;|m < z} (2)
Furthermore,
1
li 1= 1dF(1
o #{m e S |m < x} Z r(m) /R+Z (log 2)

meS;: m<x

for all ¢ € N. The characteristic function VU(t) of F' is an Euler product whose factors
depend on t € R.

The idea of proof is as follows: For ¢ > 1, the function r is approximated in the ¢g—th
mean by functions Rp, P € N, such that

|r — Rpl|ly — 0 as P — oo.

Here

. 1 1/q
Il == (timsup 2 37 17ml7) € 0.0
for f : N — C. This step relies heavily on a zero density estimate of Kawada [10]. The Rp
are partial products of Euler products derived from (j,,. They are almost periodic which
follows from the relation between the splitting of rational primes p in k,, and the splitting
of X! —m in F[X] and Qp"*"[X]. Here Q4™ is the maximal unramified extension of

Qp.
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Since almost periodic functions have limit distributions, a standard argument shows
the same for r. In fact the procedure in this last step is somewhat different since we also
want to show the smoothness of F'.

1, C, ... will denote positive constants depending on the parameters given in paren-
theses. By € we denote an arbitrary positive real.

2. SPLITTING OF RATIONAL PRIMES IN k,,

The material in this section belongs to concrete algebraic number theory and is not
new. For the convenience of the reader the relevant results are given in modern language
and proofs are scetched.

For two polynomials f, g denote the discriminant of f by discr(f) and the resultant of

fand g by R(f, g).

Proposition 2.1. Let o be a complete discrete valuation ring with characteristic 0 and
mazximal ideal p = mwo. Assume that the monic separable polynomial f € o[X]| has the
prime decomposition f = f1--- f, in o[X]. Let a € Ny with n%||discr(f) and for 1 <i <
J <, let pij € No with 7?5 || R(fi, f;). Then o' := %", pij < a/2. For all monic g € o[X]
with deg g = deg f and g = f mod 7, there is a prime decomposition g = gy - - - g, with

deg g; = deg f;, g; = fi mod 7Ta+1_p/, 1< <r.

Proof. This proposition rests on a generalization of Hensel’s lemma and its essence is
contained in [16]. For the formulation in terms of valuation rings, see [2]. O

For a rational prime p let Q, be the field of p-adic numbers and @p an algebraic closure

of Q,.

Proposition 2.2. Let o € C be a zero of the monic irreducible polynomial f € Q[X] and
define K := Q(«). Let pOg = pSt -+ -pS be the prime ideal decomposition of the rational
prime p in K. For 1 <4 < r, let d; be the residue class degree of p;. Set n; = e;d;
and let & € @p be a (p™ — 1)=st primitive root of unity. There is a prime decomposition
f=rfi- fr in Qu[X], where the f; are monic of degree n; and different from each other.
Each f; has a prime decomposition f; = gi1 -+ Gia, 0 Q,(&)[X], where each g;; is monic
of degree e;.

Proof. Let f = fi--- f be a prime decomposition in Q,[X] with monic factors. Since
f is separable, all the f; are different. Let «; € @p be a zero of f; for 1 < i < 7r'. Let
v, be the p-adic valuation on @p. It is well known (see, e.g., Neukirch [15], Chapter II,
Theorem 8.2) that 7" = r and the enumeration can be choosen such that for 1 < ¢ <r
there is a homomorphism 7; : K — @p with 7;,(a) = o, and v, o 7; is the continuation of
v, to K that belongs to p,. Thus Q,(«;) is isomorphic to a completion of K with respect
to v, o7, and
deg fi = [Qp() : Q] = eid; = n;.

If d e Nand ¢ € @p is a (p? — 1)-st primitive root of unity then Q,(¢) is the uniquely
determined unramified extension of Q, in @p of degree d (see, e.g., [11], Chapter III,
Section 3). Let & € Q, be a primitive (p% — 1)-st root of unity. Then Q,(&}) C Q,(v).
Thus Q,(c;)/Q,(&) is completely ramified of degree e;. Since d;|n;, we have p% —1|p™i —1
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and thus Q,(&)) € Qu(a;) NQ,(&) =: L. Since L/Q,(&]) is unramified and completely
ramified, we have Q,(&)) = L = Q,(a;) N Q,(&;). Since Q,(&;)/Q, is finite and galois the
Translation Theorem gives

[Qp (& 1) = Qp(&)] = [Qp(ew) : Qp(&)] = e

Let f; = ¢i1- - - gia be the decomosition of f; in Q,(&;) into monic irreducible polynomials.
We can assume g¢;1(o;) = 0. Then g;; is the minimal polynomial of «; over Q,(¢;) and
thus deg gy = ¢€;. Let 1 < j < dand (€ @p a zero of g;;. Then f;(§) = 0 and thus «;
and 3 are conjugate of Q,. Let o be a Q,-automorphism of @p with o) = 5. If ¢ is
the image of g;; under o, we have g7 (5) = o(gi1(a;)) = 0. Since Q,(&;)/Q, is normal, we
have g7 € Q,(&)[X] and thus g7 is the minimal polynomial of 3 over Q,(&;). Therefore
gi; = g3, and in particular deg g;; = degg;1 = e;. Since this holds for all 1 < j < d, we
finally have d - e; = n;, e.g. d = d;. ]

Proposition 2.3. Let f € Z[X] be monic and irreducible and o € C a zero of f. Define
K = Q(a) and let pOg = p{*---p& be the prime ideal decomposition of the rational
prime p in K. For 1 < i < r let d; be the residue class degree of p;. Let a € Ny
with p®|| discr(f). Then for every monic irreducible g € Z[X| with degg = deg f and
g = f mod p®™t the following holds: If B € C is a zero of g and K' := Q(f3), then the

prime ideal decomposition of p in K' is of the form

pOr =4y -4,
and for 1 < i < r the residue class degree of q; is d;.

Proof. We combine Propositions 2.1 and 2.2 several times. Let p Og = qill e qils be the
prime ideal decomposition of p in K" and d} the residue class degree of q;. Let §; € @p
be a primitive (p™ — 1)-st root of unity where n; := e;d;. By Proposition 2.2 we have
a prime decomposition f = f;--- f. in Q,[X] where f; is monic of degree n,. Gauf’
Lemma gives fi,..., fr € Z,[X]. Let p; € No with p?/||R(f;, f;) and p' := >, pij.
From Proposition 2.1 it follows that there is a prime decomposition g = gy - - - ¢, in Z,[X]
with degg; = deg f; and ¢; = f; mod p® for 1 < i < r, where ¢/ := a+1— p/. By
Proposition 2.2 again it follows that s = r and, after some reordering, n; := e.d; = n; for
1 <i<r. A well known theorem gives

discr(f) = H diser(f;) H R(fi, f;)
i=1 i
and thus a = Y_;_, ord, discr(f;) + 2p/. Therefore a’ > ord, discr(f;) for 1 <14 < r. Fix
1 <4 < r and let o; be the valuation ring of K; := Q,(&;). Since K;/Q, is unramified,
the maximal ideal of o; is po;. By Proposition 2.2 there is a prime decomposition f; =
fir+ -+ fig; in KG[X] where each f;; is monic of degree e;. Gau8’ Lemma shows that f;; €
0;[X] for 1 < j < d;. Since g; = f; mod p°dr disr(f)+1 and deg g; = deg f;, Proposition 2.1
gives a prime decomposition g; = gi1 - - - gig; in 0;[X] with deg g;; = deg fi; = e; for 1 < i <
d;. A final application of Proposition 2.2 gives €, = e; and d; = n./e, = n;/e; = d;. O
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Proposition 2.4. Let | be a rational prime and m € S;. Then [k,, : Q] =1 and for all
rational primes p # [, we have

#{p\p | p is a prime ideal in k,, with residue class degree 1}
= #{x mod p|2' =m mod p}. (2.1)

Proof. Let p be a rational prime with p|m. Let a € N with p?||m. Since m is [-power—free,
we have [ fa and there are z,y € Z with ax + 1y = 1, > 0. Define m’ := (mp=*)*p € N.
Then m’ = m*p¥", m = (m/)*(mp~2)¥" and thus k,,, = k..

Since m # 1 there is a rational prime p as above. Since p||m’, the polynomial X! —m’ €
Z[X] is Eisensteinian with respect to p and thus irreducible. Therefore [k, : Q] = [k, :
Q=1

Now let p # [ be an arbitrary rational prime. If p|m, Proposition 4.18 of [14] is
applicable and gives pOy,, = pOy, , = p! with some prime ideal p of k,, with residue
class degree 1. Thus the left hand side of (2.1) equals 1. The same holds for the right
hand side since p/m. Now assume p fm. The absolute discriminant of the elements \/m’,
0<j<Il-1,isd=1'"m"" and therefore p fd. For the index t := [0, : Z[{/m]],
we have d = t%dy,, jo where dy,, /g is the absolute discriminant of k,,. Thus p ft and
Theorem 4.12 of [14] is applicable. Let X! —m = f,--- f, mod p with monic irreducible
polynomials fi,..., f, mod p. Since p fd, the f; are different from each other. Therefore
p Oy, = p1---p, with different prime ideals p; of k,,; each p; has residue class degree
deg f;. Thus the left hand side of (2.1) equals #{1 < i < r| deg f; = 1} which is the
number of zeros of X! — m mod p. O

3. SOME AUXILIARY FUNCTIONS

Let p be a rational prime. For m € S, define

x(m,p) == #{plp ‘ p is a prime ideal of k,, with f(p/p) =1} — 1,
1\ —x(m.p) 1 -1
Ypr(m) == (1 - —) comem) = ] <1 B pf(p/p>> ’

p plp: £(/p)2
’yp(m) = Tpl (m)%ﬂ (m),

where f(p/p) := [Ok,/p : Z/pZ] is the residue class degree of p. For m € N\ S,
define yp1(m) = yp(m) = v,(m) := 0. For b € Ny, let R, be a complete system of
representatives of the coprime residue classes modulo p®~2++1 From Dirichlet’s prime
number theorem it follows that we can assume R, C 5.

Lemma 3.1. For p a rational prime, 0 < b < [ —1, m € Ry, and m' € S, with
m’ = pPm mod p*"VHHL we have i (m') = ,i(pPm) fori=1,2.

Proof. For m" := p’m € S, the absolute discriminant of X! — m” is d = I'/(m”)!"! and
hence p*=1+%||d, where 6, = [ for p = [ and §, = 0 otherwise. Since m’ = m” mod
pP=D+%+ Proposition 2.3 shows that the invariants connected with the decomposition
of pin k,, and k,,» are the same after some reordering. Therefore 7,;(m’) = v,;(m”). O
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Lemma 3.2. The density of S is

d(s)) := zh—{go% #{me S |m <z} =)
For a,q € N coprime, we have

1 1 11
lim = S lm<z m=amodq} =~ (1——) d(S)).
lim - tm € Sy [m < =a mod g} = [ (1= ) d(si)
plg
Proof. Let x be a Dirichlet character modulo q. For = > 0, define
Sy@) = > x(m).
meS;::m<zx

Then

Mobius inversion gives

COTT (1 et 0D v — e
Syl@) =) u(d)x(d’)TX%) B g{(l pz) +0(¢Vx), X = Xo,

d<i/z O(q¥/), X 7 Xo-
Now the orthogonality relation for characters gives

#{me S m<zr,m=a modq}:@ Z S (7)x(a) = EH(l_%>x+O(q\l/®'

x mod g qp/{q

0

For P > 2, define the function
Rp(m) = H Yp(m), meN.
p<P

For z > 1, define Si(z) := #{m € S;|m < z}. Furthermore, define the distribution
function

1
Fpg(2) = S #{m € S;|m <z, Rp(m) <e*}, z€eR

Let Up, be the characteristic function of Fp,. For p a rational prime and ¢ € R, define
A 1 b, \it
v =(1-2) X S 2 wim)
0<b<i—1 mERpp

Finally, set

Up(t) = [ v(n.).

p<P

Lemma 3.3. For all P > 2, we have lim,_,oo Vp,(t) = Up(t) uniformly int € R.



Proof. For t € R, we have

Up (t) = /R CEdFp () = —— S Rp(m)"

Sl(x) meS;:m<lz

_ S,Ex) ¥ 3 Rp(m)", (3.1)

0<bp<i—1(p<P) meS;:m<zx,ord, m=by, (p<P)

The inner sum equals

> > Rp(m)™. (3.2)

mpERpb,, (p<P) mESl:mgr,mprPmp mod pbp(i=1)+i+1 (p<P)

Fix m, for p < P. It follows from Lemmas 3.1 and 3.2 that the inner sum in (3.2) equals

H Vp(pb”mp)it #{m' €5 ‘ m <x Hp_b”, m’ = a mod q}

p<P p<P
a1 141 T
~ TTw@rm) T (1= ) dS)e—— (3.3)
p<P q ol p Hpgpp P
where ¢ = Hpgppbp(l_””“ and a € N with ged(a,q) = 1 depends on the b, and m,,.

Putting (3.1), (3.2) and (3.3) together we see that for fixed P > 2, we have

1
qu,x (t) - Sl(w) Z Z

0<bp<i—1(p<P) mpERpp, (p<P)

. o 1\-1
TT (e my) T » 00 1(1 - —l) d(S)z + o(1)
p<P p<P b
=Up(t) + o(1)
as x — oo uniformly in ¢t € R. O

Lemma 3.4. Let ¢ > 0. For alln € N and ay, ..., a, € [—c,c] with Z?Zl a; =0, we have

LI o, 1 ¢ RS 3
E‘Ze i §exp<—%2aj+Oc<EZ|aj| ))
j=1 j=1
Proof. The power series expansion of the exponential function gives

Jj=1
n
l’E el
ni4
Jj=1

= ﬁ‘ Z (1+ia; + @ + Oc(|ajy3))’
j=1

1 <& I~ 3
“[-mXdr oz r)|
7=1 7j=1
Together with Holder’s inequality it follows that

1 n . 1 n
3o (3 35)

j=
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3

1

ik S oS )i S o (33
j=1 J=1
ol ) < e S

Jj=1 Jj=1 Jj=1
n

<o (0.2 1)),

j=1

O

Lemma 3.5. (1) There is some ¢ > 1 such that for all |t| > ¢, p > ¢(|t| + 1),
=1 mod [, we have

I —
[(p, D] < exp ( - 4p21t2>'

(2) Foralld > 1, |t| <, p+#1 a rational prime, we have
1
Ypt) =1+ 00 <z?>

Proof. Let p # [ be a rational prime, ¢ > 1 and |t| < ¢’p. Then

1 1 it 1 it
W (p, t)(l _ﬁ> = > p(m) +ﬁ > pm)

meERpo mERp1
b(l—2)+1+1
+ O( Z b(l—1 +l+1p )
2<b<l— 1

The error term is O(p~2). For m € S;, we have

) 1
it _ _
Yp2(m)*" = exp ( it Z log (1 pf(p/p)))

plp: f(p/p)>2

—en( Y o)) =ew (o))

plp: f(p/p)>2
t
— 140, (U)

p

Thus
1 1 1\ —x(mp)it 1 1\ —x(pm.p)it It +1
w(pﬂf (1__):— (1__> +— (1——) +Oc//< >
) ol plt1 meZRpO p p2 meZRpl p p?

Since p # [, Proposition 2.4 gives x(m,p) = p(m,p) for m € S;, where
p(m,p) :=#{x modp|2z' =m modp} -1, mecZ
The function p(-, p) is p—periodic and

> plm,p)=0. (3.4)

m mod p



Thus
]_ 1 —p(m,p)it
Y(p,1) = > (1 - —) P

m mod p:pfm p

1 1\ —,Op)it t|+1 1
b (1= 57 ey o (M) 1 Ly
p p p p

> (1-3) " roe () 65)

1
P p?

(1) Let ¢ > 1 and assume [t| > ¢, p > ¢(|t|+1), p = 1 mod [l. The following O—constants
do not depend on ¢. By Lemma 3.4 it follows from (3.5) and (3.4) that

1 t
|¢(p,t)| S’_ Z —ztp(mp)log(l 1/p) +O<| |>
p m mod p p
< exp ( L > £2p(m,p)*log® (1 - 1)
2 — p
m mod p
1 1y 3 t
+ O(— Z ]t|3p(m,p)3‘ log (1 — —)‘ )) + O(%)
pm mod p p p

since
1 1
—itp(m,p 10g<1——>’§ tHil+1)—— <I1+1.
|~ tptmptog (1= 2 )| < L+ 1)1

From [[p — 1 it follows that F has a cyclic subgroup of order I. Thus the kernel of the
homomorphism F} — F¥, 2 2!, has order . Therefore p(0,p) = 0, p(m,p) =1 — 1 for
(p — 1)/l elements of F; and p(m, p) = —1 for the rest of them. This gives

> plm,p)?*=(p-1)(1-1)

m mod p

and therefore

(.0 < exp (- l2p1t2+o(|ﬂ3>>+0<|ﬂ)

p? p?
For z,y € R, |z, |y| < ¢4, we have exp(z) +y < exp(z + y + O, (z?)). This gives

|1p(p,t)]§eXp<—l2p1 +O(|;|3>+0<|t|)+0<|;|4)>

o (-t o(5).

Choosing ¢ > 1 large enough gives |(p, t)| < exp(—(l — 1)t*/(4p?)).
(2) Now let ¢ > 1 be arbitrary, |t| < ¢ and p # [. Since

1 1
—7 R < </
‘ itp(m, p) log (1 p)‘ < |t|(l+1)p_ LS d(l+1),
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Taylor expansion in (3.5) together with (3.4) gives

U(p,t) = % Z <1 — itp(m, p) log <1 — %) + Oc/<’;\22>> + Oy <]%>

m mod p

_ 1+OC/<]%).

O

Lemma 3.6. (1) The infinite product V(t) := Hp »(p,t) converges uniformly fort in
any bounded subset of R. As |t| — oo, we have

C5|t|
U(t) < exp ( — m)

with some constant c5 > 0.
(2) There are distribution functions Fp, P > 2, and F with the properties:
e The characteristic function of Fp is WUp.
The characteristic function of F' is .
The sequence (Fpy).>1 converges weakly to Fp.
The sequence (Fp)psa converges weakly to F'.
F is infinitely differentiable and all its derivatives are bounded.

Proof. (1) The uniform convergence of ¥(¢) on bounded sets follows from Lemma 3.5(2).
The prime number theorem in arithmetic progressions gives

1 Cg
> 52
xlogx

2
p>x:p=1 mod p p

as © — 0o. From the definition it follows immediately that |1 (p,t)| < 1 for all p,¢. Now
Lemma 3.5(1) gives for |t| > ¢

vl IT 0 ew(-'5f)

p>c(|t|4+1): p=1 mod I

t2(1—1) 1
= exp < —— Z F)
p>c([t|+1): p=1 mod I
B C@(l — 1)t2 )
de(|t] 4+ 1) log(c(|t| + 1))/

(2) From Lemma 3.3 and Kolmogorov’s Continuity Theorem (see, e.g., [7], Lemma 1.11)
it follows that Wp is the characteristic function of a distribution function F'» which is the
weak limit of the sequence (Fpy),>1. From part (1) it follows that limp . Up(t) =
U(t) uniformly for bounded t. The same argument as above now shows that U is the
characteristic function of a distribution function F' such that limp_ . Fp = F weakly.
The Fourier Inversion Theorem (see, e.g., [7], Lemma 1.10) and the fast decay of ¥ show
that

SeXp<

o0 e—ztzz _ e—ztzl

F(z) - F(z) :/

. it

U(t) dt (3.6)
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for z1, 29 € R at which F' is continuous. In particular,

F(z) - ()] < /

— 0 Zt(Zg — Zl)

for these z1, zo. This shows that F is continuous everywhere and (3.6) holds for all 2, 2s.
The theorem on differentiation of parameter integrals now shows that F' € C*°(R) and
all its derivatives are bounded. O

o] efthQ . efztz1

(T(t)|dt - |25 — 21| < |22 — 21

4. ALMOST PERIODICITY OF THE FUNCTION r

Let D be the C-linear space of periodic arithmetical functions and, for ¢ > 1, let D? be
the closure of D with respect to || - ||, in the space of all functions with finite ¢-seminorm.
Then D17 is a Banach space (see [18], Chapter VI, Theorem 1.4).

For s > 1 and m € S, we have

G (5)C(5) ™ =11 (m, 5) ra(m, 5) r3(m, ),

1 -1 1\ —x(m,p)
ri(m,s) := H H (1 — 7f(p/p)s> , To(m,s) = <1 — Z_S) ,

P plp: f(p/p)>2

1\ —x(m.p)
rs(m,s) := H <1 - Z;) :

p#l
Thus r = r{ ryr3, where

where

rz(m,1), m e s,
1 ZHsz, T2 = M1, Ts(m) :{ 03( ) meNl\Sl. }
p

Lemma 4.1. (1) For every e > 0, the product ri(m,s) converges uniformly with re-
spect tom € S, Rs > 1/2 + €.
(2) Form € S, the function r1(m,-) is holomorphic and zero—free on Rs > 1/2; it is
bounded on every half-plane s > 1/2 + € where € > 0.
(3) For every q > 1, we have 1,19 € D1,

Proof. (1) follows easily from the condition f(p/p) > 2 in the product. (2) follows from
this and the fact that the factors have no zeros in Rs > 1/2.

(3) First we show that for p a rational prime and ¢ > 1, we have 7,1, € D
From Lemma 3.1 it follows that for m/,m” € S, with m/ = m” mod p=V*++ we have
Yoi(m') = vpi(m”), i = 1,2. For a set X C N, denote its indicator function by Ix. We
see that there are p=D*++1 periodic functions ,; with 7,; = i1, Since Ig, € DI (see
[18], Chapter VII, Theorem 4.1), we have 7,; € D?. In particular, ry = ;; € D

Now let ¢ > 1 and € > 0. From (1) it follows that there is some P > 2 such that
[r1(m) — [1,<pyp2(m)| < € for all m € ;. Trivially this also holds for m € N'\ .5;. From
the above we know that v,, € D" for all p < P where 7(P) is the number of primes
< P. Thus Hpg pYp2 € D% So r; is the uniform limit of functions in DY and therefore
ry € DI, O

Lemma 4.2. (1) For m € S, the function r3(m,-) is holomorphic on Rs > 1/2.
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(2) There is some 0 < p < 1 such that for all sufficiently small € > 0, there are
constants c(€) > 0 and 1/2 < oy(€) < 1 with the property: For all x > 1 and all
m € S;, m < z, with the exception of O(z'=?) many, we have

r3(m, s) <. exp(c(e)(log x)°)
for Rs = o9(€), |Ss| < (logx)?/4, and

Tg(m,S) < (dkm/(@(|%8| + 1))08
for Rs = gy(e).

Proof. Since (y,, (s)¢(s)~! is entire (see [22] or [23]), part (1) follows from Lemma 4.1(2).
Part (2) is proved in the usual way. Let 1/2 < 0y < 01 < 1 be fixed and m € S;, m < z,
such that (x, (s)¢(s)™" has no zeros in oy < Rs < 1, |Is| < log®z. For s = 3/2, we have

Gl 6(5) <1 k=TT (14 5m) <

The functional equation shows that
(G (1 = ) < (diyo(ISs] + 1)), [C(1 =)' < (ISs] + 1)

with some constant ¢ > 0. Furthermore, (;, grows polynomially in the strip —1 <
Rs < 3/2. The same holds for ((s)~! if s is not too close to the zeros of ((s) (see [5],
Chapter 17). Thus the Phragmén-Lindel6f Principle shows that

[r3(m, 5)] < (i, /0(|Ss| +1))**

for og < Rs < 3/2.
On Rs > 1, the function

logrs(m, s) := Z
p#l

is a logarithm of r3(m, s). Because of the assumption, it can be extended to the region
oo < Rs < 1, [Ss] < log? z. Furthermore,

1
|logrs(m, s)| < 1 +ZPT
p

x(m, p)

for Rs > 1. The Borel-Caratheodory theorem now gives
|logrs(m, s)| < logdy,, /o + loglogx < logx

for o1 < Rs < 3/2, [Ss| < (logz)?/2, since dy,, jo|l'm'™'. From this it follows by
Hadamard’s Three Circles Theorem that

|log rs(m, s)| <. (logx)*

forz>>. 1, Rs=1—¢€(1—01)/3, |Ss] < (logx)?/4.
It remains to show that the number

A(og, x) :==#{m € S;|m < =z, ¢, (s)((s)"" has a zero in o9 < Rs < 1, |Is| < log?z}
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is negligible if oy is choosen appropriately. By Kawada’s density theorem [10], we see that
Z N(m;1—n,T) < (NT)"™ 1<T<N,
meS;: N<m<2N

where n = 1/(2000{?) and N (m;1—mn,T) is the number of zeros of ¢, (s)¢(s) ' in1—n <
Ns <1, |Ss| < T. Now put N = 2/, T = log®x, and sum over 2loglogz/log2 < i <
log z/log 2. This gives

A(1 —n, z) < 2Ploglog/log 21 Z (2'log® 2)'" < (zlog” z)' "
0<i<logz/log?2
Choosing 0 < p<mn, 00 =1—1n, 09 < 01 < 1 and 03(¢) = 1 — ¢(1 — 07)/3 finishes the
proof. |

The following lemma ist the main analytic tool to approximate r by periodic functions.
For m € S, let x(m, ) : N — C be multiplicative with

o = {7

Lemma 4.3. For every o > 0, there is a constant co(c) > 0 with the property: Forx > 1,
N := 2%, and allm € S, m <z, with the exception of O(x'~*) many, we have

_ X(mvn) —n/N —cg(a)
rs(m) = Zin e +O(x ).
n>1
Proof. For m € S, p a rational prime and a > 1,

(-Dil+1)---(I+a-2) (l+a-2\ (+a—2)---(a+1)
()T

() () (o) S

Thus for n € N, we have

IX(m,p*)| <

al a

[X(m, n)| < d(n)"=2. (4.1)

Now the Binomial series shows that for s > 1, we have

r3(m,s) = Z w, (4.2)

n>1
where the Dirichlet series is absolutely convergent.
Choose € > 0 so small that Lemma 4.2 can be applied. Let x > 1, N := z%, and
m € S;, m < x, a non—exceptional number. Since r3(m, -) grows polynomially in the strip
o9(€) < Rs < 2, the residue theorem gives

1 24100
rs(m) = rz(m,1) :2_m/2 r3(m,s)T(s — 1) N*ds

—100

o2(€)+ico
- / r3(m, s) (s — 1) N*~'ds. (4.3)

2(€)—ioco
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Since A
1 B+ioco

21 B—ico

plugging (4.2) in the first term of (4.3) gives the value

Z X(m,n) e /N

n

n>1

Furthermore,
[(s—1) < (|Ss] +1)7e ™32 Rs = ay(e),

with some constant ¢; > 0. Therefore Lemma 4.2 gives for the second term in (4.3) the
estimate

/ (OB (] 4+ 1)e7=IH/2 o)1 gy
jt1<(log 2)2/4

‘) (8] 4+ 1) (] + 1)7e TN g
[t|=(log x)? /4

< No2o-1 (ec(aaogas)e . 5E<z—1>cse—(w/2—e><1ogm>2/4> < p—ool@)

with some constant cg(a) > 0. O

Lemma 4.4. For all m € S;, we have r3(m) < (logm)'~*.

Proof. From [14], Corollary 4 to Theorem 7.1, it follows that

r(m) < (logdy,,0)' " < (logm)"~'.
Since r1(m), r2(m) > 1, the statement follows. O
Proposition 4.5. For all ¢ > 1, we have r3 € D?. For ¢ > 1, we have |r3]|? <
exp(ci2 ¢ loglog(q + 2)).

Proof. Let ¢ € N and o > 0 be fixed. From Lemmas 4.3 and 4.4 and (4.1) it follows that
for L >1, x> LY* and N := z®, we have

X(m, n) |2
> - 3 X
meS;:m<x 1<n<L
_ _ d(n)'=2\2a
<zt p<(log:1:)2q(l 2 —l—( Z - )

Since x > L'/®, the first sum on the right hand side is

<Y ( 3 d(”gm.xﬁa)%.

1<m<z 1<n<L
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Thus

2q

limsupl Z ‘rg(m)— Z @

xT
=00 meS;: m<x 1<n<L

, 1 X(m,n) . a2

<, 1 — ‘ T e . 4.4

g limsup — > > e (4.4)
meS;:m<x n>L

From Proposition 2.4 it follows that for all rational primes p # [, the function x(-,p) is
p—periodic on S;. Thus for all n € N, the function x(+,n) is n—periodic on S;. Therefore
it can be extended to an n—periodic function on N — which is again denoted by x(-,n)
— such that for all m € N the function x(m, -) is multiplicative. With this extension, we

have
X(m,n 2q 2q
we TRty |
n
meS;:m<z n>L 1<m<zx
1
_ —(n1+-mn N
= E — e (m 20)/ Sg(nl,...,ngq),
ny...Nay
ni,...n2q>L
where

So(n1, ..., Ngq) == Z X(m,ng) - x(m,ny,).

1<m<zx

Now we must estimate S;. Assume first that there is a rational prime p with p||n; - - - ng,.
By the Chinese Remainder Theorem,

Z )Nc(m7 n1> . X(m7 n2q) — H ( Z X(m,ﬁordﬁ nl) . X(m’ﬁordﬁ nzq))7
m mod ni--nag p?||n1-n2g ™ mod p
where p runs through rational primes. The factor for p = p is
> X(m,p)=0;
m mod p
for p # [ this follows from Proposition 2.4, and for p = [ it is trivial. Thus
[So(nr, o mag)l < D [R(mm) - X(mymag)| <y mgg(d(m) -+ - d(ngg)) R

m mod m1--naq

If, on the other hand, p?|n; - - - ng, for all prime divisors p of nj - - - ng,, all we can say is
that

|Sa(n1, -+ mag)| < w(d(nn) -+ - d(ngg)) >
With this we get the estimate
1
S Keq > ————x (n1- - ngy)

) Ny --- n2q
N1,...,n2¢>Lin1naq is squarefull

1
+ Z - ef(n1+---n2q)/N (nl . n2q)1+e

Nn1,...,n2¢>L:n1-n2q is not squarefull
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Leg @ Z diql ¢ < Z n'e _n/N)

n>L24:n is squarefull n>0

Since n€e /N < N¢(n/N)e /N <. N e ™ (2N) the second term on the right hand side
is
&« N2e(1 — ¢ V@M o N2l

Z :H<+Z 126)

n>1 is squarefull p z>2

Since

converges, we have
Sy < x5(L) 4 a0+«
where s(L) — 0 as L — oo. Thus it follows from (4.4) that

e £ B

1<n<L

<<q s(L)

if we choose 0 < o < 1/(2¢(1 + ¢€)). Since Is, € D?*? and the sum above is periodic, we
have 73 € D??. This holds for all ¢ € N. Thus r3 € D4 for all ¢ > 1.
In particular, for ¢ € N we have

Irsll3e = Jim stl S x(

1<n<L

, an argument as above gives

1
Z 752(711,...,%2(1)

nl..-an

Since [x(m,p®)| < (*57)

Z ‘ Z X(m,n) 2

meS;:m<z 1<n<L 1<n1,...,n2¢<L

< Z Z d(ny) - -~ d(ngg) + C(L, q),

n>1 squarefull ny-N2g=n

where d is multiplicative with J(p“) = (l+a 2) the <-constant is independent of ¢ and
C(L,q) does not depend on x. Therefore,

Irslfoe < Y = > d(my)---d(na)

n>1 squarefull ni-N2g=n
2q
—H(HZ_ 3 H(Hal_z)). (4.5)
a>2 ai,...,a2¢>0: a1+ -azg=a i=1 i

For |2] < 1, we have ) (l+a_2) 2% = (1 — 2)~U=Y and thus

a

D 3 ﬁ(”‘;”) (-2 Ki=2g(—1).

a>0 ai,...,a2¢>0:a1++azq=a i=1
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Denote the p-th factor in (4.5) by A(p). For p < K, we have A(p) < (1 —1/p)~¥ and

thus

K K
logA(p) < — < —.
p—1 " p

For p > K, we have

A= (- ) Ly (D - 4y

RPN (WIS

and thus

o < ey (F) 155 (9) (- 2)

Since p > K, we have

and

KK\ 1 1/ Ky\#rtl 1 /K\2
(V) <=(5) =5(5) 1=e<k
p \k/)p* ~ kl\p k!'\ p

Therefore log A(p) < K?/p?. Plugging these estimates in (4.5) gives

K K?
HrsH%Z < exp (Clo( Z — + Z —2)) < exp(c11 K loglog K).
e P ok P

Since ||rs||s is non—decreasing in t > 1, the second statement follows. O
Now we can prove part of the main theorem.

Theorem 4.6. For ¢ > 1, we have r € D1. The function r, restricted to S;, has a limit
distribution. For q > 1, the q—th moment of r on S; exists and equals the q—th moment
of its limit distribution.

Proof. From Lemma 4.1(3) and Proposition 4.5 it follows that r = ryrory € D? for all
q > 1. In particular, the ¢—th moment of r on 5;

1 1 q _— 1 q
o= im gy vl = g Il

exists. Since r; and ro are bounded, it follows from Proposition 4.5 that

By < (supr179)?||r3|] < exp(eis gloglog(q + 2)),

and in particular the power series

@(@::HZ%zq

q>1
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has infinite radius of convergence. Since [, is the limit of the ¢-th moments of the
distribution functions F,(log z), z € R*, where

F.(2):= % #{me S |m<az rim)<e}, zeR,

if follows from a theorem of Fréchet and Shohat (see, e.g., [7], Lemmas 1.43 and 1.44)
that the sequence (F(z)),>1 converges weakly to a distribution function F*(z), and that

By :/ 2%dF*(logz), q €N,
R+

It remains to show that F* € C°(R) and to compute the Euler product representation
of W(t).
O
5. SMOOTHNESS OF THE LIMIT DISTRIBUTION

In the proof of Theorem 4.6, the function r was approximated by periodic functions.
This was useful to show almost periodicity and give estimates of the moments. Now r
will be approximated by Rp which will be used to show that F' = F™.

Proposition 5.1. We have limp_. ||r — Rp||2 = 0.
Proof. For L > 1, define

e ety 3 KD,

1<n<L
From the proof of Proposition 4.5 it follows that s;(L) — 0 as L. — oco. For P > 2, define

H’YPQ —1‘

From Lemma 4.1 it follows that so(P) — 0 as P — oo. Furthermore,

ra(m) T 2pe(m)| < o0

p<P

82 = sup
meS;

S3 = sup
meS;, P>2

Since X(-,n) is n—periodic, we have

s4(L) := sup ‘ M’ < 0
mesit 2 T
Thus for m € S;, P > L > [, we have
Y(m,n
S ) )
n
1<n<L
X m,n) X m,n)

o H(Hm —1) DI CEIRNS SR CR | JEER)
p<P p>P 1<n<L 1<n<L p<P:p#l
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Since 1 9 is bounded, we get

lr — Rplla < ||r — Is,r172 Z X 71T Z X
< 51(L)2 + 55(P)sa(L) +Hfs, > g T o,
1<n<L p<P p#l
For M > L, define appp(n) := —1if M > n > L and p < P for all p|n. Define

apra(n) := 0 otherwise. Then for z > 1,

> \me” I vwm)

meS;:m<z 1<n<L p<P:p#l

‘Z X(m,n)apra(n) 3 X(m,n)

meS;:m<z n>1 n>M: pln=p<P

< Z ‘Z X(mm)ZP,L,M(n) 2 ( Z d(nr)bl_Q)Q'

m<zx n>1 n>M: pln=p<P

Denote the second sum on the right hand side by s5(M, P). Since

> Cl(”T)H«)O,

n>1: pin=>p<P

it follows that s5(M, P) — 0 as M — oo for fixed P > 2. Since ap p(n) =0 for n > M,
an argument similar to that in the proof of Proposition 4.5 shows that

Hfsl 3 X(;;n) I [ m z

1<n<L p<P:p#l

dn1 dTLQ =2
3 (d(n1) d(ns))

UARLD)

<K ‘ap,L7M(n1)ap7L7M(n2)| +S5(M, P)2

ni,ne>1:ning squarefull

1
< Z W—I—SE)(M, P)2

n>L?2 squarefull

Thus for all M > L, P > L > [, we have

1
Ir = Rplls < s1(L)'? + s5(P) sa(L) + Y —7 (M P).

n>L2 squarefull

Letting M — oo gives

1
_ 1/2 =
[r = Rplls < s1(L)/" + s2(P) sa(L) + Z YE
n>L2 squarefull
for P> L > 1. Given € > 0 there is an L > [ with >, o> (uaeran? 2> < € and

s1(L) < €2. Then there is a Py > L such that for P > Py, we have so(P) s4(L) < € and
thus ||r — Rplls < €. O
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With Lemma 3.6 and Proposition 5.1 the following theorem can be proved as in [17],
end of section 5.

Theorem 5.2. On S, the function r has the limit distribution F'.
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